University of Mississippi Graduate Student Council 9th Annual Research Symposium March 26, 2019

Ecological Drivers of Subterranean Termite Distributions

Chaz Hyseni Ph.D. Candidate Ryan Garrick Associate Professor

Department of Biology University of Mississippi

&

Distribution/niche modeling: occurrence data and environmental variables

Why are some termite species pests more successful than others?

Niche divergence and competitive exclusion

Is there niche divergence among species of subterranean termites? Competition for resources: do species competitively exclude other species?

Geographic distribution and abundance

What environments do subterranean termites occur in? What environmental conditions facilitate geographic and demographic expansions?

Lim SY, Forschler BT. Reticulitermes nelsonae, a New Species of Subterranean Termite (Rhinotermitidae) from the Southeastern United States. *Insects* 2012;3:62–90.

Austin JW, -G. Bagnères A, Szalanski AL, *et al.* Reticulitermes malletei (Isoptera: Rhinotermitidae): a valid Nearctic subterranean termite from Eastern North America. *Zootaxa* 2007;1554:1–26.

Restriction Digestion

Restriction Enzymes: KRsal KTaql KMspl

Digestion of 376 bp fragment of mitochondrial DNA

G T A C T C G A C C G G C C A T G A G C T G G C C C

Restriction	Fragment	Species				
Enzyme	Sizes (bp)	R. flavipes	R. hageni	R. malletei	R. nelsonae	R. virginicus
Rsa I	175, 201	✓	×	×	\checkmark	✓
	48, 127, 201	×	×	\checkmark	\checkmark	×
	86, 115, 175	\checkmark	\checkmark	×	×	×
Taq I	376	×	✓	✓	\checkmark	✓
	153, 223	×	×	×	\checkmark	×
	183, 193	✓	×	×	×	×
	67, 126, 183	\checkmark	×	×	×	×
	30, 67, 126, 153	\checkmark	×	×	×	×
Msp I	376	✓	×	×	\checkmark	✓
	37, 339 *	✓	×	\checkmark	×	×
	77, 299	×	\checkmark	×	\checkmark	×
	37, 40, 299	×	×	~	×	

Geographic Sampling

132 sampling sites: 40 **122** sites: 1 rotting log each 10 sites: 2-4 rotting logs each 38 36 *Reticulitermes flavipes* = Rf (91) Latitude Reticulitermes malletei = Rm (17) 34 \bigcirc Reticulitermes virginicus = Rv (30) 32

Longitude

Bioclimatic (biologically-relevant climatic) variables

bio7: Temp. Annual Range

-75

4

88

36

34

32

8

28

-90

-85

Longitude

-80

Latitude

bio10: Mean Temp. of Warmest Qrtr.

bio5: Max. Temp. of Warmest Mo.

bio16: Precip. of Wettest Qrtr.

bio14: Precip. of Driest Mo.

bio17: Precip. of Driest Qrtr.

Environmental/climatic factors

Predicted niche occupancy

Niche overlap: two different statistics: D and I

Niche overlap (for each environmental factor):							
two different statistics: D and I							

	Rf	Rm	Rv
Rf	-	D = 0.744 p = 0.280	D = 0.582 <i>p</i> < 0.001
Rm	I = 0.935 p = 0.239	-	D = 0.788 p = 0.630
Rv	I = 0.843 p < 0.001	I = 0.961 p = 0.750	-

TR ST DP WP 0.889 0.872 0.693 0.820 Rf/Rm 0.683 0.707 0.680 0.680 D Rf/Rv Rm/Rv 0.791 0.809 0.894 0.848 0.991 0.990 0.919 0.982 Rf/Rm Rf/Rv 0.917 0.928 0.926 0.942 Ι Rm/Rv 0.952 0.961 0.990 0.984

Niche identity test: *p* value < 0.05 = niche divergence

Co-occurrence of subterranean termite species

Longitude

How/when did Rf spread northward?

Distributional Shift: South-to-North

Present

S

120,000 to 22,000

Distributional Shift: North-to-Center

Central Expansion

4 8 38 Latitude 34 8 8 8 Present -75 -90 -85 -80 C Ν S Longitude Ne = 1.2 million

6,000 to present

Why is <u>*R. flavipes*</u> a pest more successful?

Niche divergence and competitive exclusion

- Significant niche divergence between *R. flavipes* and *R. virginicus*
- Competitive exclusion: *R. flavipes* occurs to the exclusion of other two species in the north

Geographic distribution and abundance

- All three *Reticulitermes* species co-occur in mid-latitudes of the southern Appalachians (high dry-season precipitation)
- Broad distribution: *R. flavipes* occurs farther north (low dry- and wet-season precipitation) than other two species
- Northward distributional shift followed by geographic/demographic expansion