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Abstract 

Biodiversity is heavily influenced by ongoing climate change, which often results in species undergoing range 
shifts, either poleward or uphill. Range shifts can occur provided suitable habitats exist within reach. However, 
poleward latitudinal shifts might be limited by additional abiotic or biotic constraints, such as increased sea-
sonality, photoperiod patterns, and species interactions. To gain insight into the dynamics of insect range shifts 
at high latitudes, we constructed ecological niche models (ENMs) for 57 Odonata species occurring in northern 
Europe. We used citizen science data from Sweden and present-day climatic variables covering a latitudinal 
range of 1,575 km. Then, to measure changes in range and interactions among Odonata species, we projected 
the ENMs up to the year 2080. We also estimated potential changes in species interactions using niche overlap 
and co-occurrence patterns. We found that most Odonata species are predicted to expand their range north-
ward. The average latitudinal shift is expected to reach 1.83 and 3.25 km y−1 under RCP4.5 and RCP8.5 scenarios, 
respectively, by 2061–2080. While the most warm-dwelling species may increase their range, our results in-
dicate that cold-dwelling species will experience range contractions. The present-day niche overlap patterns 
among species will remain largely the same in the future. However, our results predict changes in co-occur-
rence patterns, with many species pairs showing increased co-occurrence, while others will no longer co-occur 
because of the range contractions. In sum, our ENM results suggest that species assemblages of Odonata—
and perhaps insects in general—in northern latitudes will experience great compositional changes.
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Human-influenced climate change has had major impacts on bio-
diversity (e.g., Walther et al. 2002, Parmesan 2006). The global 
average temperature has increased by 0.85°C since 1880 and is 
predicted to increase globally another 0.3 to 0.7°C by 2035 (IPCC 
2014). Furthermore, owing to Arctic amplification, the largest tem-
perature increases are observed at high latitudes in the northern 
hemisphere (Serreze and Barry 2011, IPCC 2014). Hence, at these 
latitudes, large decreases in seasonality are predicted (Xu et al. 2013) 
which in turn may affect species distributions (Root et al. 2003). 
Ultimately, climate change is predicted to increase species extinction 
risk (Urban 2015), but it will also affect phenology (Cohen et al. 

2018), physiology (Pörtner and Farrell 2008), abundance (Carey and 
Alexander 2003, Johnston et al. 2013), and distribution (Velásquez-
Tibatá et al. 2013, Vieira et al. 2018). Given that high latitudes in the 
northern hemisphere are predicted to be extra sensitive to climate 
change (IPCC 2014), knowledge about the effects of climate change 
on northern organisms is especially important.

To keep pace with climate change, species could adapt to new 
environmental conditions, or go through shifts in geographic dis-
tribution to track optimal conditions (Parmesan and Yohe 2003). 
Although the potential of species to tolerate change and to evolve 
may have been underestimated (Nadeau and Urban 2019), 
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numerous studies have documented ongoing poleward or altitu-
dinal range shifts (Hickling et al. 2005, Wilson et al. 2007, Barbet-
Massin et al. 2012). For dispersal-limited species, most range shifts 
are predicted to occur in the form of contractions of species ranges, 
as high-latitude and montane habitats become reduced compared 
to mid-latitude and low-elevation regions, or because a range may 
contract faster at the trailing edge than it can expand at the leading 
edge (Lenoir and Svenning 2015). While assessments of vulnerability 
to climate change have been extensively documented in the birds 
and mammals (Pacifici et al. 2015), the most intense responses are 
expected in ectotherms, such as insects, which are particularly sen-
sitive to ambient temperature change (Wilson et al. 2007, Sinclair 
et al. 2016). Insects represent the vast majority of animal species 
and biomass, and fill many niches within ecosystems (Prather et al. 
2013, Scudder 2017). Given that this group of organisms is already 
undergoing dramatic population declines (Wagner 2020), it is of 
the utmost importance to understand the impact that future climate 
change may have on the survival of insect species.

Ecological niche models (ENMs) are increasingly used to infer 
how environmental variables are shaping species distributions (Elith 
and Leathwick 2009, Peterson et al. 2011). ENMs are spatially ex-
plicit analytical tools that relate species occurrence data with the bi-
oclimatic variables to infer a range of suitable conditions for species 
and generate habitat suitability maps. Coupled with climate change 
scenarios, ENMs are often used for projecting future change in spe-
cies distributions (Thuiller 2004), making it possible to identify areas 
of particular interest for conservation (Markovic et al. 2014), antic-
ipate emerging threats from vector-borne diseases (Leta et al. 2018), 
and many other applications. Most ENMs include predictors which 
are ecologically relevant for the target species, such as temperature or 
precipitation data, topography, or land cover (Elith and Leathwick 
2009). In addition, the use of ENMs to predict distributional changes 
comes with implicit assumptions regarding dispersal abilities. Both 
unlimited- and no-dispersal scenarios can be relevant and often run 
in parallel (Collins and McIntyre 2015), though attempts to model 
cost-weighted dispersal kernels have been performed (Bush et al. 
2014). Another important assumption in these models is that a spe-
cies’ ecological niche does not change through time (niche conserv-
atism). However, the phenotypic plasticity (Valladares et al. 2014) 
and the disruption of current or the emergence of future biotic 
interactions (Urban et al. 2013, Fitt and Lancaster 2017) are likely to 
alter ecological niches, which are hard to anticipate. Moreover, range 
shifts might be limited by additional non-climatic abiotic constraints 
increased at high latitudes, such as greater seasonality or lower solar 
insulation (Spence and Tingley 2020). Nevertheless, the assumption 
of the Eltonian noise hypothesis suggests that biotic interactions are 
averaged out at large spatial scales (Soberón and Nakamura 2009). 
Thus, ENMs integrating various climatic variables can still useful for 
predicting future species distributions under different climate change 
scenarios without explicitly considering the biotic interactions when 
they are largely unknown (Jenkins et al. 2020).

Odonates (dragonflies and damselflies) are valuable indicators 
that can be used to track climate change impacts on entire insect 
communities. This is partly because of the substantial dispersal 
abilities of the adult stage. While the adults are terrestrial, their 
larval stages occur in the freshwater environments. Thus, the niche of 
odonates might be driven by both aquatic and terrestrial conditions. 
They are widely distributed and the adult stage is conspicuous, thus, 
promoting studies and data collection (Bybee et al. 2016). However, 
extensive documentation of dispersal is still lacking in odonates but 
field and molecular studies indicate that some species have reduced 
dispersal abilities (a few hundred meters covered in an adult lifetime 

in Coenagrion mercuriale, Watts et al. 2004) while others such as 
long-distance migrants or arid-zone species, can span hundreds of 
kilometers (May 2013, Suhling et al. 2017). In the same population, 
dispersal distance can vary greatly with most individuals staying 
near their emergence site with few long-distance dispersers (Keller 
and Holderegger 2013). The colonization of new areas might stem 
from both recurrent small-scale movements and rare long-distance 
dispersal events. Currently, there is a growing interest in the appli-
cation of ENMs to odonates (Patten et al. 2015, Pires et al. 2018, 
Rodríguez-Tapia et al. 2020). But, multispecies ENMs are still rare 
for odonates (Collins and McIntyre 2015) and represent a very low 
portion of arthropod ENMs published (Mammola et al. 2021). For 
instance, Hickling et al. (2005) found an average northward range 
shift of 74 km between 1960 and 1995 for 37 nonmigratory British 
odonates with an increase in range size for all but two species. More 
recently, Termaat et al. (2019) showed that temperature increase has 
benefited most odonate species regardless of their temperature pref-
erence in various European countries, namely, Sweden. However, 
neither of these two studies used an ENM approach. Moreover, 
another study, which was conducted in Germany using occupancy 
models, confirmed the positive effect of temperature preference as 
well as the key role of species habitat on distribution trends (Bowler 
et al. 2021). While ENMs have been constructed for two closely 
related northern European damselfly species (Wellenreuther et al. 
2012), future projections are still lacking for high-latitude species in 
this region (Collins and McIntyre 2015, but see Li and Park 2020). 
Although regional-scale ENMs usually do not cover the entire distri-
bution of species, they continue being useful in predicting distribu-
tional change and guiding future surveys (El-Gabbas and Dormann 
2018), especially in the high latitudes neglected by the past ENM 
efforts (Collins and McIntyre 2015). Within odonates, a variety of 
interspecific interactions can be involved from intraguild preda-
tion and competition at both adult and larval stages (Moore 1964, 
Wissinger 1992) to territorial and mating interference (McEachin 
et al. 2022). Given the wealth of biotic interactions possible within 
odonates, it is not feasible to consider them a priori as potential 
factors shaping odonate distributions. Nonetheless, inferring from 
ENMs probabilities of species interactions and potential changes in 
these probabilities because of the ongoing climate change can be in-
strumental in anticipating more fundamental compositional changes. 
Indeed, ENM approaches may be essential in helping us understand 
how odonates, and insects in general, will respond to climate change 
in the northern latitudes.

While the range of boreal species is expected to contract dramat-
ically, northern high-latitude areas are also expected to gain tem-
perate species that will undergo northward range shifts (Langham et 
al. 2015). Despite the great dispersal abilities of odonates, their trop-
ical evolutionary history and the associated physiological constraints 
may limit poleward colonization into areas of high seasonality and 
low-solar insulation (Hassall and Thompson 2008). Here, we used 
opportunistic occurrence data, generated by citizen science, span-
ning a latitudinal range of 1,575 km throughout Sweden (northern 
Europe), to model ecological niches for several odonate species, in 
order to address the following questions: 1) what is the present-day 
geographic distribution of odonate species richness in Sweden; 2) 
how will odonate distributions change by 2080, assuming niche 
conservatism and unlimited dispersal; 3) will niche overlap and 
co-occurrence patterns among species change over time as a result 
of climate change possibly leading to new interspecific competition 
or to the loss of existing interactions; and 4) whether traits, such as 
temperature preference, habitat, and phylogeny, affect niche overlap 
and vulnerability to climate change.
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Methods

Occurrence Data
Opportunistic geo-referenced observations of 66 odonate spe-
cies occurring in Sweden were extracted from the Swedish Species 
Observation System, Artportalen (https://www.artportalen.se/), 
which is a freely accessible reporting system used by the citizen 
scientists from all around the country. Our analysis is thus limited 
to Sweden. Despite this limitation, this is a comprehensive data set, 
collected at a fine spatial resolution, and it covers a large geographic 
area, extending latitudinally over 1,575 km, with many data entries 
and extensive coverage. We extracted ca. 200,000 odonate records 
collected over a 30-yr period, from 1991 to 2020. However, we only 
considered data collected between 2006 and 2020, a period during 
which 2,500 or more records were reported annually. The retained 
records also represented a period when reporting was more geograph-
ically uniform, with the earlier records being more biased toward the 
south of the country. Citizen scientists are responsible for the accu-
racy of their records (date, location, and species identification) that 
are regularly validated by the experts. Records with low resolution 
(> 1 km) and outliers with doubtful or inaccurate species identifica-
tion based on uploaded photos were discarded. Data were not filtered 
for life history stages or other indications of autochthony (oviposi-
tion, larvae, and exuviae). Geographic coordinates initially available 
in a country-specific coordinate reference system (SWEREF99 TM, 
EPSG:3006) were converted into WGS84 (EPSG:4326).

Environmental Predictors
To determine habitat suitability, we used a set of 16 ecologically 
and physiologically relevant climate predictors (ENVIREM, Title 
and Bemmels 2018) and also one topographic predictor (altitude). 
The climate predictors relate to various components of odonate life 
cycle (see Supp Table S1 [online only] for complete list) such as the 
length of the growing season for larval development, some levels of 
humidity or continentality that are important components of adult 
stage preferences and tolerance, and temperature seasonality that 
can constrain larval development and voltinism. The 16 ENVIREM 
climate predictors were generated from monthly temperature (max-
imum, minimum, and average) and precipitation climatologies, as 
well as solar radiation averaged over recent decades (1979–2013) 
available in the CHELSA v1.2 data set (Karger et al. 2017). This 
period was considered to reflect present-day climatic conditions and 
provide the finest spatial resolution available, with a rectangular 
grid of 0.0083 degree (ca. 1 km × 0.3 to 0.5 km depending on the 
latitude within the study area). The same variables were generated 
for future periods (2061–2080) under two greenhouse gas concen-
tration trajectories (RCP4.5 and RCP8.5, intermediate and worst-
case scenarios, respectively). The future climatologies we used for 
these two scenarios originate from seven different global circulation 
models (GCMs) from the CMIP5 generation (ACCESS1-0, CCSM4, 
CMCC-CM, CNRM-CM5, GFDL-ESM2G, HadGEM2-CC, and
MPI-ESM-MR). These were chosen because they have been shown
to yield satisfactory predictions in Europe (McSweeney et al. 2015)
and low levels of interdependence (Sanderson et al. 2015). Altitude
data were obtained from the EU-DEM v1.1 (https://land.copernicus.
eu/imagery-in-situ/eu-dem/eu-dem-v1.1) and the resolution was
upscaled to fit that of the climate variables.

Environmental Niche Models
We used environmental niche models (ENMs) to predict changes 
in species distribution dependent on the future climate change. 

For accurate niche-modeling estimates, records should be evenly 
distributed geographically. However, despite removing data from 
early collection years, there was still unevenness present in the data, 
with more records from the south compared with the northern lat-
itudes. In order to reduce spatial autocorrelation due to such un-
even reporting efforts across the study area, we spatially thinned the 
occurrence data set for each species with the R package ‘spThin’ 
(Aiello-Lammens et al. 2015). This made it possible to keep a max-
imal number of records outside a neighborhood with a radius of 10 
km around each data point. Nine of the 66 species with less than 
25 records after the thinning step were not included for niche mod-
eling. These species are either recent colonizers (Aeshna affinis, Anax 
ephippiger, Crocothemis erythraea, Lestes barbarus, and Lestes 
viridis), or are elusive restricted-range species (Nehalennia speciosa, 
Somatochlora sahlbergi, and Sympecma paedisca), or have probably 
been accidentally introduced (Sympetrum pedemontanum). Thus, 
the input data consisted of presence-only occurrences for 57 spe-
cies (the number of records for each can be found in Supp Table 
S2 [online only]), with 17 environmental predictors. In order to as-
sess potential multicollinearity among the environmental predictors, 
we ran the function removeCollinearity from the ‘virtualspecies’ R 
package with the default threshold set at 0.7. Despite the existence 
of multicollinearity among the 17 environmental predictors (seven 
groups of intercorrelated predictors), all were included in the ENM 
to increase model performance (i.e., limit the overestimation of 
range compared to ‘true’ range), and decrease the uncertainty as-
sociated with the choice of predictors (Beaumont et al. 2005) and 
the risk of missing relevant predictors for at least some species. 
However, we note that including all 17 predictors prevents any re-
liable analysis of predictor contribution to the model (Sillero and 
Barbosa 2021). Prior to performing ENM projections based on the 
future climatologies, we used the mobility-oriented parity (MOP) 
metric (Owens et al. 2013) on a random sample of 10% of all the 
geographic grid cells in the study area. We used MOP to estimate 
Euclidean distances in the multivariate environmental space between 
the present-day and future ranges. This metric helps to identify areas 
where future values of predictors are outside of their present-day 
range and thus models make extrapolations.

ENM algorithms were used to compute habitat suitability maps 
from occurrence data and environmental predictors. For each spe-
cies, we ran four types of machine learning algorithms from the 
stacked species distribution model R package (‘SSDM’, Schmitt 
et al. 2017): multivariate adaptive regression splines (MARSs), 
generalized-boosted regression models (GBMs), random forests 
(RFs), and support vector machines (SVMs). The four algorithms 
have been shown to be robust to multicollinearity issues (Dormann 
et al. 2013) and yielded models with some of the best performances 
among the algorithms available in the package assessed over a se-
lection of species (Supp Table S3 [online only]). The transforma-
tion from habitat suitability to binary presence/absence was carried 
out using the threshold that maximized the true skill statistics (TSS; 
Allouche et al. 2006). TSS corresponds to the sum of sensitivity 
and specificity minus one (the sensitivity and specificity are the 
proportions of correctly predicted presences and absences, respec-
tively). Model fit was assessed using the area under the curve (AUC) 
of the receiver operating characteristic (ROC) plot (Manel et al. 
2001) and kappa statistic (Allouche et al. 2006). Each of the four 
algorithms was run twice on present-day variables and the eight 
models were then assembled (and weighed according AUC) into an 
ensemble ENM using the ensemble_modelling function from the 
‘SSDM’ package (Schmitt et al. 2017). Model cross-validation was 
performed by splitting the occurrence data set into a training set 
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(70% of the records) and an evaluation set (the remaining 30%). 
The present-day ensemble ENM were projected over the two future 
climate scenarios on separate GCMs, with the assumption of the 
unlimited dispersal. All the models and mapped predictions where 
visually assessed and compared with input occurrences to detect 
any obvious mismatches between data and models (Supp Fig. S1 
[online only]). From the three sets of 57 ensemble ENM for present 
day and future scenarios, a stacked SDM allowed to generate spe-
cies richness maps by summing the probabilities of habitat suita-
bility maps. This stacking method has been shown to overestimate 
species richness (Calabrese et al. 2014), but remains useful to com-
pare different scenarios.

Species Traits and Range Shift Metrics
In order to assess potential correlations with range shift dynamics, 
three species traits (phylogeny, habitat, and temperature preference) 
were considered (see Supp Table S4a [online only]). Phylogeny was 
limited to suborder-level differences, Anisoptera and Zygoptera (i.e., 
dragonflies and damselflies). Larval habitat was either lentic (larval 
stage occurring in standing water), lotic (in flowing water), or gen-
eralist, following Hof et al. (2012). Temperature preference catego-
rization was based on a European-scale Species Temperature Index 
(STI; Termaat et al. 2019), with cold- and warm-dwellers considered 
to have STI below 5.5°C and above 10°C, respectively. STI is defined 
as the annual average temperature a species experiences in Europe 
(excluding Russia). It is worth noting that temperature preference is 
not necessarily the result of an active choice by individual insects, 
but rather reflects the optimal range of temperatures to which a spe-
cies is adapted.

The median latitude for each species’ distribution was computed 
from the present-day ENM and future projections to estimate the 
expected speed of range shifts (assuming no dispersal limitation). We 
used median latitude (as in Rotenberry and Balasubramaniam 2020) 
rather than mean latitude as the median is less influenced by extreme 
values. For similar reasons, latitudinal amplitude was estimated with 
the inter-decile distance (the difference between the first and the last 
decile) to limit the influence of extreme values.

To characterize the nature of range shifts (i.e., identify expan-
sion or contraction), from niche projections we estimated the net 
range change in square km (Scol − Sext; ‘col’ = colonization, ‘ext’ = ex-
tinction) between present day and the 2061–2080 period. We di-
vided net range change by the present-day range area (Spres, in km²) 
to compute a range change index (following Buisson et al. 2010, 
see equation 1), exhibiting the magnitude of change accounting for 
more or less restricted species ranges. A positive value of this index 
means net range surface gain (range expansion) with a value of 100 
meaning that the total range is expected to double. Conversely, neg-
ative values indicate the net range surface loss (range contraction) 
with a value of −50 meaning that the total range is expected to halve 
and −100 meaning total extinction of suitable conditions within the 
study area. Values near 0 indicate range stability or perfectly bal-
anced range shift (surface gained ≈ surface lost).

Range change index =
Scol − Sext

Spres
× 100

(1)

Niche Overlap Analyses
The probability of species interactions and potential changes in in-
teraction due to range shifts can be captured by the niche overlap 
and co-occurrence analyses. From the binary maps produced by spe-
cies ENMs, the suitable area or geographic space can be converted 

into a niche or environmental space (e-space) by sampling the en-
vironmental conditions of suitable versus unsuitable areas. Dealing 
with the e-space of different species allows for more relevant 
comparisons as e-space is relatively insensitive to spatial biases, 
even when distributions are out of equilibrium. We estimated the 
e-space for each species using the ‘humboldt’ R package (Brown
and Carnaval 2019). The e-space was then used to determine niche
overlap among species, based on both the present-day and future
ENMs. We used Schoeners’ D as a measure for the niche overlap,
which ranges from 0 (no overlap in environmental tolerance) to 1
(identical environmental preference, Warren et al. 2010). To limit
overfitting, ENM locations were thinned so that locations were at
least 50 km apart. This was performed only on a subset of 10,000
randomly selected ENM locations to decrease computation time.
The accessible environment on the basis of which niche overlap
calculations were performed was limited to a 100 km buffer area
around each location. According to the definition given by Brown
and Carnaval (2019), the niche overlap metric was calculated in-
cluding non-analogous e-space, i.e., the accessible portion of e-space
shared by both species in the pairwise comparison. E-space can be
represented as a two-dimensional density grid for which the resolu-
tion was set to 50 instead of 100 to improve computation time and
we kept the default kernel smoothing and kernel density threshold
parameters of 1 and 0.001, respectively. E-space densities were also
corrected by the abundance of different environments.

A multivariate approach was used to determine to what extent 
species traits would drive niche overlap patterns. We performed 
distance-based redundancy analysis (db-RDA; Legendre and 
Anderson 1999), using the capscale function from the ‘vegan’ R 
package, with three categorical variables (suborder, habitat, and 
temperature preference) as predictors. The contributions of these 
traits to niche overlap patterns were estimated using the varpart 
function in the same package. For each time period, we used a back-
ward selection process, involving removal of non-significant traits 
(α = 0.05) until all the remaining traits were significant (Hyseni et al. 
2021). Significance was determined using ANOVA, after adjusting 
for the main effects of the other predictors.

Co-occurrence Analyses
Species interaction probabilities were also assessed using the check-
erboard analyses (Stone and Roberts 1990), performed with the 
‘ecospat’ R package (Di Cola et al. 2017). We used the C-score, 
which has been shown to have good statistical power for detecting 
non-randomness (Gotelli 2000). The C-score quantifies the extent 
to which two species segregate (a C-score higher than expected by 
chance is indicative of a strongly antagonistic interaction such as 
competition or discrepancies in habitat requirements) or aggregate 
(a C-score lower than expected by chance is indicative of a posi-
tive interaction or similarities in habitat requirements). The mag-
nitude of the significance is estimated with the standardized effect 
size (SES). In cases where there is no significant difference between 
observed and expected C-scores (i.e., a random pattern of co-occur-
rence; |SES| < 2), then no direct possible interaction is inferred. We 
simulated random co-occurrence patterns (i.e., null distributions of 
expected C-scores) using environmentally constrained matrices (i.e., 
habitat suitability from ENMs as site weights). We used habitat suit-
ability scores derived from 10,000 randomly sampled cells of the 
present-day and future ENMs as the environmental constraints in 
order to rule out the effect of environmental conditions as much 
as possible (Peres-Neto et al. 2001), and used 10,000 permutations 
to generate matrices for the null models. The relationship between 

http://academic.oup.com/ee/article-lookup/doi/10.1093/ee/nvac056#supplementary-data
http://academic.oup.com/ee/article-lookup/doi/10.1093/ee/nvac056#supplementary-data
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co-occurrence patterns and niche overlap for both the present-day 
and predicted future species range were explored, following Bar-
Massada (2015). All the analyses were performed using R 3.6.2 soft-
ware (R Core Team 2019).

Results

Quality of the Models
Of the 57 ensemble ENMs generated, 36 models (63%) had an 
AUC > 0.8 or Kappa > 0.6 (Supp Table S2 [online only]), which is an 
indication of good-predictive ability (Thuiller et al. 2009). A negative 
correlation was found between AUC score and the latitudinal ampli-
tude of ENM range (R² = 0.70, Supp Fig. S2 [online only]), meaning 
that models for species with narrow distributions (occurring only in 
a limited fraction of the study area, e.g., only in the south) performed 
better than models for widespread species (occurring throughout 
Sweden). Despite this, we retained all the ENMs for subsequent 
analyses to avoid biased interpretations of patterns if we discarded 
widespread species by focusing only on ENMs with AUC > 0.8.
The MOP analyses for future projections indicated reasonably low 
levels of extrapolation (values close to 1) in the northern portion of 
the study area for all the scenarios and GCMs (Supp Fig. S3 [online 
only]). Thus, the present-day ENMs are fairly well transferable in 
such areas. However, the southern portion of Sweden is dominated 
by strict extrapolation, i.e., some of their climatic conditions exceed 
the range of the predictor values currently existing in Sweden. This 
suggests that range shifts occurring in the south should be interpreted 
with some caution.

To complement the reliability assessment of future projections, 
we projected the Sweden-trained ENMs over the present-day climate 
conditions in the central Europe and compared the suitability maps 
obtained with actual presence in this area (Supp Table S5 [online 

only]). Moreover, the range change trends we predicted were also 
compared to the recent trends from other studies that used occu-
pancy models. For most species, we found correct extrapolation to 
central Europe and consistent trends with other studies (Supp Table 
S5 [online only]). Only Ophiogomphus cecilia showed an obvious 
discrepancy because of its odd distribution in the northern Sweden 
compared with occurrences at warmer temperatures in the rest of 
Europe.

Present-Day and Predicted Species Richness
Based on the stacked SDM output, we detected the highest species 
richness in the southern portion of the study area (ca. one third of 
Sweden; Fig. 1A). A low-reporting effort of odonate species in the 
north-western part of Sweden resulted in an underestimation of 
suitable habitat for widespread species. Despite this, we observed 
a strong negative latitudinal gradient in species richness, especially, 
along the Baltic coast, Mideast, and Northeast (Fig. 1A) where the 
reporting effort is greater than the further inland (Supp Fig. S4 [on-
line only]). ENM projections for the RCP4.5 and RCP8.5 trajectories 
suggest an increase in species richness in the northern two thirds 
of the country. This increase is more limited in high-altitude areas 
in the Northwest (Fig. 1B, Supp Fig. S5 [online only]). The level of 
inland colonization varied greatly according to the GCM used (see 
Supp Fig. S6 [online only] for some representative examples). The 
projections showed some species loss in areas of high present-day 
species richness, but this pattern needs to be interpreted with cau-
tion given model extrapolation results (Supp Fig. S3 [online only]). 
Decreases in species richness predicted for some lowland and coastal 
areas of southern Sweden might in fact be compensated by the ar-
rival of new species. For instance, four recent colonizers (originally 
excluded from niche modeling due to an insufficient number of 

Fig. 1. Spatial distribution of present-day species richness and predicted change. (A) Results from stacked SDM showing present-day species richness in Sweden. 
(B–C) Projections of species richness change, in number of species, compared to present-day richness according to RCP4.5 (B) and RCP8.5 (C) climate change 
scenarios for 2061–2080. Species richness change is shown in shades of gray (in the online version gains are represented in shades of green and losses in shades 
of red), and for each shade the two numbers indicate the range of change. Only maps obtained with ACCESS1-0 GCM are shown, which are representative of 
the average GCMs (see Supp Fig. S5 [online only] for other GCMs). 
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records), plus four other species not yet present in Sweden, which 
are likely to reach the country within the next few decades. When 
included in analyses, these eight species compensated for decreases in 
richness projected for southern Sweden, except for the southernmost 
coastal areas, where these new arrivals would not compensate for 
local extinctions (Supp Fig. S7 [online only]).

Winners and Losers
In total, 89% of the species modeled (51 out of 57, Fig. 2A) are ex-
pected to expand their range by 2061–2080 under the RCP8.5 sce-
nario (88% under RCP4.5; Supp Fig. S8 [online only]). The average 
growth in suitable area is 133,260 ± 64,243 km² (mean ± SD) and 
78,789 ± 45,536 km² according to RCP8.5 and RCP4.5 scenarios, 
respectively (Fig. 2B, Supp Fig. S8B [online only]). Suborder and 
habitat had no effect on the range change index (Kruskal–Wallis 
rank-sum test P = 0.55 for both). In contrast, temperature prefer-
ence had a significant effect on range change (see blue and orange 
bars in Fig. 2A; Kruskal–Wallis rank-sum P < 0.001). A pairwise 
comparison using the Wilcoxon rank-sum test indicated that only 
the cold-dwelling species group (STI < 5.5°C) were significantly dif-
ferent from the intermediate (P < 0.001) and warm-dwelling species 
(P < 0.001) groups. The range change in the terms of absolute surface 
showed a similar pattern with regard to cold- and warm-dwelling 
species (Fig. 2B). Only a few species are expected to undergo genuine 
range shifts involving both contractions in the south and expansions 
in the north. The majority of these are cold-dwelling species such as 
Aeshna caerulea and Coenagrion johanssoni but also, interestingly, a 
few intermediate-temperature species such as Leucorrhinia caudalis 
and Epitheca bimaculata (Fig. 2B). These last two species are absent 
in the north, which suggests that it is not only species with ranges re-
stricted to the north that show this pattern of predicted retreat in the 
south and expansion in the north. On the basis of the ensemble ENMs 
and projections, the median latitude of species range in Sweden is 

expected to increase from 58.9 ± 1.81 to 61.1 ± 2.06 degree north by 
2061–2080 under RCP8.5 scenario. It represents a northward shift 
of 241 ± 132 km between 1996 and 2070 (average years of each 
period) thus an average median latitude shift of 3.25 ± 1.78 y−1 (Fig. 
2C, Supp Table S4a [online only]). On average, shifts in the first and 
last latitude decile (assumed to reflect lower and upper range limits) 
are 1.11 ± 1.04 km y−1 and 5.67 ± 2.54 km y−1, respectively (Supp 
Table S4b [online only]). Similarly, under RCP4.5 scenario a north-
ward shift in median latitude of 135 ± 97 km is expected between 
1996 and 2070, which represents an average shift of 1.82 ± 1.31 km 
y−1. Under this scenario, lower and upper range limits are predicted 
to shift at a speed of 0.67 ± 0.69 km y−1 and 3.71 ± 2.15 km y−1, re-
spectively (Supp Table S4b [online only]). Of the three species traits, 
only temperature preference had a significant effect on median lati-
tude shift (the Kruskal–Wallis rank-sum test P < 0.001). In contrast, 
only warm-dwelling and intermediate species groups differed signifi-
cantly (Wilcoxon rank-sum test P < 0.001), with an average median 
latitude shift of 2.39 ± 0.79 and 3.66 ± 0.88 km y−1, respectively. 
Median latitude shift of cold-dwelling species was more dispersed 
and reached on average 2.98 ± 2.32 km y−1.

E-Space Niche Overlap Analyses
The level of niche overlap greatly varies among species pairs (Fig. 
3). Five species tend to display very low-niche current overlap with 
other species, e.g., Ophiogomphus cecilia–Coenagrion johanssoni. 
These five species can be considered as the northern species in
Sweden. Other species show high overlap, e.g., Erythromma
najas and Somatochlora metallica. After the backward selection
process of removal of non-significant traits, temperature prefer-
ence and habitat were retained as significant in present-day and
2061–2080 RCP4.5 scenarios and only temperature preference in
2061–2080 RCP8.5 scenario (Table 1). Using db-RDA variance
partitioning, we determined that temperature preference explained 
a larger portion of variance in niche overlap patterns than habitat

Fig. 2. Predicted range change between the present day and the 2061–2080 RCP8.5 scenario. (A) Range change index corresponds to net range change surface 
relative to the present-day range surface. Cold-dwelling (species temperature index, STI < 5.5°C) and warm-dwelling (STI > 10°C) species are shown in dark and 
light gray, respectively (blue and orange in the online version). Intermediate-temperature species (5.5°C < STI < 10°C) are represented by intermediate shades 
of gray. Species temperature preference categories are specified in Supp Table S4a [online only]. (B) Range change surface. Surface area predicted to become 
unsuitable or suitable for species is represented as negative and positive values, respectively. (C) Average annual shift of range median latitude between the 
present day and 2061–2080. The values correspond to the average of seven different GCMs with standard deviation. Striped bars indicate species ensemble ENM 
with AUC and Kappa scores below 0.8 and 0.6, respectively. Range change for the 2061–2080 RCP4.5 scenario is given in Supp Fig. S8 [online only].
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and suborder for present-day and the two 2061–2080 scenarios 
considered (Supp Fig. S9 [online only]). In accordance with the 
assumption of niche conservatism, the observed patterns seem to 
remain in future projections, but some differences emerged (Fig. 
3). For example, Erythromma najas and Orthetrum coerulescens 
showed cases of higher overlap in the future than present. These 
differences may come from portions of non-overlapping e-space 
niches that may no longer exist in the future within the study area 
resulting in increased niche overlap or from some extrapolation 
of the model.

Co-occurrence and Niche Overlap
While the e-space niche overlap analysis aims to determine species 
similarity in terms of habitat preference only, the co-occurrence 
analysis focuses on species interaction probability alone, without 
the habitat suitability component. A total of 94.8% of species pairs 
had co-occurrence patterns for both present day and the future 
(2061–2080 RCP8.5 scenario) significantly different from random 
(|SES| > 2). This high proportion of significant results might stem 
from the high number of ‘sites’ (10,000) considered. For present-day 
co-occurrence patterns, 90.2% of pairs were aggregating and 9.8% 
were segregating more strongly than expected at random (Fig. 4). 
The proportions remained similar for the future scenario (89.2% 
aggregating and 10.8% segregating).

On average, absolute values of future SES increased compared 
with the present day (mean ± SD, 17.9 ± 6.1 for present day, 
31.1 ± 11.8 for future scenario) with 1,217 species pairs showing 
a decrease in SES (increased aggregation pattern) and 296 pairs 
showing an SES increase (decreased aggregation). Most changes 
occurred without a change in the sign of SES. However, 3% of 
pairs (n = 46) showed a change in the sign of SES between the 
present-day and future scenarios. For most of them (n = 37), the 
change was significant from negative to positive values of SES, 
meaning a change from aggregated to segregated co-occurrence 
patterns. As species interactions were not considered explic-
itly in stacked ENMs this change might reflect disjunct species 
distributions. This is supported by some markedly shifting species 
such as Coenagrion johanssoni and Leucorrhinia caudalis (Supp 
Fig. S6 [online only]) involved in 16 and 10 of those segregating 
pairs, respectively.

For both present day and future, we found a negative correla-
tion between co-occurrence (SES) and niche overlap (R² = 0.34, 
Fig. 4) which is in line with the expected relationship between high-
segregation pattern (more positive SES) and low-niche overlap. 

Fig. 3. Pairwise niche overlap between the 57 species performed on the 
e-space derived from present-day (A) and future (B–C) ENMs. Niche overlap
is estimated with Schoener’s D index. Degree of niche overlap is indicated
by shades of gray, with darker colors indicating high overlap (in the online
version, the color scale is blue to red, with the latter indicating high overlap). 
Species traits (suborder, habitat, and temperature preference) are indicated
by different shades on the left of the heatmaps. Future projections correspond 
to 2061–2080 RCP4.5 (B) and 2061–2080 RCP8.5 (C) scenarios based on a
single GCM (CMCC-CM). Species are ordered according to a hierarchical
clustering analysis performed using the complete-linkage method. Niche
overlap computation parameters are detailed in the methods.

Table 1. ANOVA table of db-RDA with species traits that have a sig-
nificant effect on niche overlap patterns for present day and two 
2061–2080 scenarios

Variable Df Sum of Sqs F Pr(>F) 

Present day
 Habitat 2 5.77 2.712 0.0044
 Temp. pref. 2 11.21 5.269 0.0001
 Residual 52 55.33 — —

2061–2080 RCP4.5
 Habitat 2 4.17 1.681 0.0449
 Temp. pref. 2 10.80 4.355 0.0001
 Residual 52 64.50 — —

2061–2080 RCP8.5
 Temp. pref. 2 19.40 6.507 0.0003
 Residual 54 80.51 — —
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However, niche overlap and C-score SES did not show perfect linear 
correlation suggesting that some additional information was present 
in the e-space niche overlap compared with the purely geographic 
metric of co-occurrence.

Discussion

Using an ENM framework, we inferred that northern European odo-
nate assemblages will experience great compositional changes during 
the next few decades. Climate change will likely result in northward 
range shifts, northward range shifts of many species, thus changing 

species richness patterns and influencing species interactions. 
Furthermore, our results suggest that cold-dwelling species are more 
likely to suffer from range shifts as well as changes in species co-oc-
currence, which could ultimately reshape interaction networks.

Based on our ENM results, the majority of species in the study 
area is expected to undergo northward range expansion by 2080. 
Considering all the species, the average median latitude shift is ex-
pected to occur at a speed of 1.83 and 3.25 km y−1 under RCP4.5 
and RCP8.5 scenarios by 2061–2080. Empirical northward expan-
sion has already been documented for British odonates in a study 
comparing range expansion from 1960 to 1995 (Hickling et al. 

Fig. 4. Relationship between species co-occurrence and niche overlap for the present day and the 2061–2080 RCP8.5 scenario (dark circles and light squares, 
respectively, red and blue in the online version). Gray lines denote differences from present day to future for the same species pair. Only species pairs with 
significant standardized effect size (|SES|> 2) for both the present day and future are displayed (N = 1,513 pairs). A positive/negative SES means that two species 
segregate/aggregate more strongly than what is expected by chance. The dashed lines represent the thresholds of significance. Niche overlap and co-occurrence 
for future scenario stem from one GCM only (CMCC-CM). Density plots show distribution spread and shift in both niche overlap and co-occurrence in the future 
scenario compared with the present day.
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2005). This study found an average range margin shift of 2.96 km 
y−1, which is close to what we found for the worst-case future cli-
mate change scenario. Interestingly, in Britain, a more recent anal-
ysis (Platts et al. 2019) confirmed range shifts at a similar rate (2 
km y−1) for multiple invertebrate groups, with most of the variation 
within rather than among groups. The similarity in rates of range 
margin shifts across studies, including our study, suggests that cli-
mate change will push many insect taxa northward and also that 
the unlimited dispersal assumption in projections is reasonable. 
Odonates, in particular in Scandinavia, already have recent examples 
of remarkable northward range expansions with Anax imperator or 
Sympecma fusca that moved about ten-fold or more the average rate 
(Flenner and Sahlén 2008). Another recent study, covering the whole 
latitudinal range of Europe, but without a full coverage of the area, 
found that the majority of the 99 species studied had increased their 
range in the 1990–2015 period (Termaat et al. 2019).

For some cold-dwelling species, i.e., those with an STI < 5.5°C, our 
models predicted a range contraction since the habitat at their cur-
rent southern range will become unsuitable. Interestingly, the study 
by Termaat et al. (2019) did not find that cold-dwelling species, as de-
fined in their study, differed in range change compared with the warm-
dwelling species between 1995 and 2015. However, that study defined 
cold-dwellers as species with STI below the mean STI of the European 
species (STI < 9.8°C) which corresponds to both our cold-dwelling 
and intermediate species groups. Our projections are more in line 
with temperature preference found to be positively correlated with 
the long-term trends in Germany, where cold-adapted species using 
standing waters showed the highest decreases (Bowler et al. 2021). It 
will be of interest to monitor if range contractions of cold-dwelling 
species predicted in our study will occur during the upcoming decades 
while we still are adapting conservation measures to limit local extinc-
tion and promote colonization of the most vulnerable species.

We predicted that species richness will increase in the northern 
areas and may decrease in the south due to local extinctions. 
Qualitatively, our models retrieved the species richness pattern known 
in Sweden based on observations with a rather high-species richness 
in the south-east and a much lower species richness in the northern 
areas (Kalkman et al. 2018). Yet, quantitatively our ENMs tend to un-
derestimate the extent of some species ranges, especially in the north-
east, thus, resulting in an underestimation of species richness. We are 
aware of two other studies that have used ENMs to study range shifts 
at the community level in the European odonates. Markovic et al. 
(2014) modeled aquatic biodiversity and found that odonate species 
richness were very little affected by climate changes until 2050 and 
explained this by their relatively high-aerial dispersal ability compared 
with strictly aquatic species groups. Li and Park (2020) modeled odo-
nate distribution covering the western and the northern Europe and 
found an increase in species richness toward the north until 2050, 
and thereafter, a decline until 2080. The results from these two studies 
differ somewhat from ours, in that our models predicted clear range 
expansion and increased species richness toward the north, which was 
not found or was less evident in these other studies. The difference 
is probably due to our study being restricted to the northern part of 
Europe. We note that there was a slight decrease in species richness in 
some parts of the southern Sweden, which gives further support for 
the scenario of a south-north difference with regard to climate change. 
Nevertheless, this decrease is probably overestimated, because recent 
colonizers and other species that are yet to arrive and were thus not 
included in ENMs could counteract local losses in species richness. 
Hence, we conclude that the majority of species will experience range 
expansion in the north, which will lead to a less pronounced latitudinal 
gradient in Sweden. This also suggests that the current biogeographical 

and geological boundary known as Limes Norrlandicus (a boundary 
between the more oceanic and continental climatic regions), coinciding 
with the range limits of many species in southern Scandinavia, might be 
crossed by at least some odonate species during the next few decades. 
However, although we included a broad variety of ecologically relevant 
variables in our models, potential effects of high-latitude environments 
are almost impossible to anticipate in the absence of the experimental 
work (Spence and Tingley 2020). Since odonates are insects, we suggest 
that these change in richness patterns might hold for insects in general, 
because studies comparing different insect taxa show very similar 
responses to climate change (Maes et al. 2010, Domisch et al. 2011). 
In general, extinction risk of species will increase with future climate 
change (Urban 2015). But, at northern latitudes, only cold-dwelling 
species may be negatively affected, while warm-dwelling species will 
likely benefit from climate change.

We found interesting disparities in the niche overlap between 
species pairs. The general pattern we observed was that cold-
dwelling species exhibited less niche overlap compared with the 
warm-dwelling species, a pattern which persisted until 2061–2080 
for both climate change scenarios. Furthermore, the C-score anal-
ysis resulted in an overall increase in co-occurrence among spe-
cies by 2061–2080, for both the climate change scenarios (Fig. 
4). Such an increase in niche overlap was also found by van 
Beest et al. (2021) in a study on vertebrates at high northern lat-
itudes (Greenland). More studies investigating changes in the 
niche overlap at the northern latitudes are needed to confirm that 
this pattern is generalizable in the northern latitudes and to un-
derstand its biological implications. These changes in the niche 
overlap were mostly seen in warm-dwelling species and although 
the majority of changes was toward higher overlap, there were no-
table exceptions. For instance, Erythromma najas, Somatochlora 
arctica, and Coenagrion puella showed a rather high present-day 
niche overlap with other species, followed by much lower niche 
overlap in the future. Conversely, Brachytron pratense, Sympecma 
fusca, Sympetrum sanguineum, and Leucorrhinia pectoralis expe-
rienced increased niche overlap in the future, compared with the 
present-day niche overlap with other species. More work is needed 
to understand why these different groups of species respond differ-
ently, how dependent on scale are these results, and whether this is 
not a result of the assumption of niche conservatism in niche mod-
eling. Indeed, several studies have found high-niche conservatism 
in insects including odonates (Peterson et al. 1999, Wellenreuther 
et al. 2012, McCreadie et al. 2017, but see Hill et al. 2017, Torres 
et al. 2018). However, temperature-induced changes in interspecific 
competition have the potential to influence distributional patterns 
(Yang and Rudolf 2010, Suhling and Suhling 2013).

Besides intrinsic factors such as STI and competition (Yang 
and Rudolf 2010, Suhling and Suhling 2013), extrinsic factors 
might affect climate-induced range shifts and changes in spe-
cies richness of odonates in the future. For instance, Li and Park 
(2020) found that, while STI was the main factor, extrinsic factors 
such as land cover type and water velocity also had a significant 
effect in predicting future distributional changes. However, the 
effect of intrinsic and extrinsic factors on niche overlap is not well 
studied. We included STI (temperature preference), suborder, and 
habitat in our analysis on niche overlap and found that only STI 
affected the niche overlap patterns significantly. The absence or 
limited effect of habitat as a trait driving niche overlap patterns 
could be explained by the coarse spatial resolution we used for 
computing niche overlap, which may have missed fine-scale niche 
differentiation that can occur within habitats (e.g. Hyseni and 
Garrick 2019).
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The predictive abilities of our models were affected by a number 
of limitations and uncertainties. The level of thinning we applied to 
occurrence records served to limit the spatial autocorrelation in areas 
where the reporting effort was high, but for the species occurring in 
both the northern and southern Sweden the density of occurrence data 
included in the model was still higher in the south than in the north. 
This likely led to an underestimation of the present-day ranges and 
thus an overestimation of their predicted range expansion. Although 
AUC is assumed to be independent of prevalence (Manel et al. 2001), 
we found the poorest ENM predictions corresponded with the most 
widely distributed species. Moreover, a higher level of thinning would 
have degraded the performance of ENM without improving model fit 
(Supp Table S6 [online only]). Some studies have managed to correct 
this bias by including sampling bias predictors in the models, such as 
distances to the main roads, cities, and protected areas (El-Gabbas 
and Dormann 2018). Also, the imperfect overlap between the date of 
occurrence records (2006–2020) and climatic variables (1979–2013) 
may lead to some small overestimations of range change given that 
range changes have certainly already occurred in the meantime. 
However, the magnitude of climate change experienced within the 
1979–2020 period is likely to be minor compared to that between 
present-day and the 2061–2080 period. This makes our ENMs still 
relevant for projecting over this timescale. In addition, the use of sev-
eral GCMs helps in obtaining reasonable projections. At last, our 
ENM projections involve three main assumptions. First, we assumed 
species distributions to be only constrained by abiotic conditions, 
which are assumed to be the dominant constraint at high latitudes 
(Sirén and Morelli 2019). Second, we assumed current distributions
are not substantially affected by interspecific interactions at this scale 
(Eltonian noise hypothesis) and dispersal limitations. Third, ENM 
projections assume the availability of habitats in areas where colo-
nization is predicted, which may be reasonable given that a substan-
tial portion of Sweden—about 10%—consists of wetlands, especially 
in the northern areas (Jeglum et al. 2011). An interesting prospect 
would be to refine niche models using such wetland data.

Despite the great potential of citizen science to collect valuable 
biological data, the present study also underlines the disparities in 
reporting effort from easily accessible versus inaccessible areas (Mair 
and Ruete 2016). We like to note that enhanced data quality could 
be reached with a little extra effort to the citizen scientist. For in-
stance, more detailed information with respect to the breeding status 
in odonate occurrence data (only available for 2% of the records) 
would allow to refine ENM so that areas suitable for breeding are 
inferred effectively (Patten et al. 2015). All this reaffirms the impor-
tance of reliable and extensive biodiversity data to help us evaluate 
range shifts in a changing world (Mihoub et al. 2017), and especially 
so at the northern latitudes.

Acknowledgments

We thank the Swedish Species Observation System and all the citizen 
scientists who submitted their sightings and made this study pos-
sible. The computations were enabled by resources in project SNIC 
2021/22-171 provided by the Swedish National Infrastructure for 
Computing (SNIC) at UPPMAX, partially funded by the Swedish 
Research Council through grant agreement no. 2018-05973.

Author Contributions

M.P.: Formal analysis, validation, visualization, writing—original
draft, writing—review and editing. F.J: Conceptualization, project
administration, supervision, writing—review and editing. C.H.:

Conceptualization, methodology, supervision, validation, writing—
review and editing.

Supplementary Data

Supplementary data are available at Environmental Entomology 
online.

References Cited
Aiello-Lammens, M. E., R. A. Boria, A. Radosavljevic, B. Vilela, and R. P. 

Anderson. 2015. spThin: an R package for spatial thinning of species 
occurrence records for use in ecological niche models. Ecography. 38: 
541–545.

Allouche, O., A. Tsoar, and R. Kadmon. 2006. Assessing the accuracy of spe-
cies distribution models: prevalence, kappa and the true skill statistic 
(TSS). J. Appl. Ecol. 43: 1223–1232.

Bar-Massada, A. 2015. Complex relationships between species niches and en-
vironmental heterogeneity affect species co-occurrence patterns in mod-
elled and real communities. Proc. R. Soc. B Biol. Sci. 282: 20150927.

Barbet-Massin, M., W. Thuiller, and F. Jiguet. 2012. The fate of European 
breeding birds under climate, land-use and dispersal scenarios. Glob. 
Change Biol. 18: 881–890.

Beaumont, L. J., L. Hughes, and M. Poulsen. 2005. Predicting species 
distributions: use of climatic parameters in BIOCLIM and its impact on 
predictions of species’ current and future distributions. Ecol. Model. 186: 
251–270.

van Beest, F. M., L. T. Beumer, A. S. Andersen, S. V. Hansson, and N. M. 
Schmidt. 2021. Rapid shifts in Arctic tundra species’ distributions and 
inter-specific range overlap under future climate change. Divers. Distrib. 
27: 1706–1718.

Bowler, D. E., D. Eichenberg, K.-J. Conze, F. Suhling, K. Baumann, T. Benken, 
A. Bönsel, T. Bittner, A. Drews, A. Günther, et al. 2021. Winners and
losers over 35 years of dragonfly and damselfly distributional change in
Germany. Divers. Distrib. 27: 1353–1366.

Brown, J. L., and A. C. Carnaval. 2019. A tale of two niches: methods, 
concepts, and evolution. Front. Biogeogr. 11: e44158.

Buisson, L., W. Thuiller, N. Casajus, S. Lek, and G. Grenouillet. 2010. 
Uncertainty in ensemble forecasting of species distribution. Glob. Change 
Biol. 16: 1145–1157.

Bush, A. A., D. A. Nipperess, D. E. Duursma, G. Theischinger, E. Turak, and L. 
Hughes. 2014. Continental-scale assessment of risk to the Australian odo-
nata from climate change. PLoS One. 9: e88958.

Bybee, S., A. Córdoba-Aguilar, M. C. Duryea, R. Futahashi, B. Hansson, M. O. 
Lorenzo-Carballa, R. Schilder, R. Stoks, A. Suvorov, E. I. Svensson, et al. 
2016. Odonata (dragonflies and damselflies) as a bridge between ecology 
and evolutionary genomics. Front. Zool. 13: 46.

Calabrese, J. M., G. Certain, C. Kraan, and C. F. Dormann. 2014. Stacking 
species distribution models and adjusting bias by linking them to 
macroecological models: stacking species distribution models. Glob. Ecol. 
Biogeogr. 23: 99–112.

Carey, C., and M. A. Alexander. 2003. Climate change and amphibian declines: 
is there a link?. Divers. Distrib. 9: 111–121.

Cohen, J. M., M. J. Lajeunesse, and J. R. Rohr. 2018. A global synthesis of 
animal phenological responses to climate change. Nat. Clim. Change. 8: 
224–228.

Collins, S. D., and N. E. McIntyre. 2015. Modeling the distribution of 
odonates: a review. Freshw. Sci. 34: 1144–1158.

Di Cola, V., O. Broennimann, B. Petitpierre, F. T. Breiner, M. D’Amen, C. 
Randin, R. Engler, J. Pottier, D. Pio, A. Dubuis, et al. 2017. ecospat: an R 
package to support spatial analyses and modeling of species niches and 
distributions. Ecography. 40: 774–787.

Domisch, S., S. C. Jähnig, and P. Haase. 2011. Climate-change winners and 
losers: stream macroinvertebrates of a submontane region in Central 
Europe. Freshw. Biol. 56: 2009–2020.

Dormann, C. F., J. Elith, S. Bacher, C. Buchmann, G. Carl, G. Carré, J. R. G.
Marquéz, B. Gruber, B. Lafourcade, P. J. Leitão, et al. 2013. Collinearity: a 

http://academic.oup.com/ee/article-lookup/doi/10.1093/ee/nvac056#supplementary-data


920 Environmental Entomology, 2022, Vol. 51, No. 5

review of methods to deal with it and a simulation study evaluating their 
performance. Ecography. 36: 27–46.

El-Gabbas, A., and C. Dormann. 2018. Wrong, but useful: regional species 
distribution models may not be improved by range-wide data under biased 
sampling. Ecol. Evol. 8: 2196–2206.

Elith, J., and J. R. Leathwick. 2009. Species distribution models: ecological 
explanation and prediction across space and time. Annu. Rev. Ecol. Evol. 
Syst. 40: 677–697.

Fitt, R. N. L., and L. T. Lancaster. 2017. Range shifting species reduce phylo-
genetic diversity in high latitude communities via competition. J. Anim. 
Ecol. 86: 543–555.

Flenner, I., and G. Sahlén. 2008. Dragonfly community re-organisation in bo-
real forest lakes: rapid species turnover driven by climate change?. Insect 
Conserv. Divers. 1: 169–179.

Gotelli, N. J. 2000. Null model analysis of species co-occurrence patterns. 
Ecology 81: 2606–2621.

Hassall, C., and D. Thompson. 2008. The effects of environmental warming on 
Odonata: a review. Int. J. Odonatol. 11: 131–153.

Hickling, R., D. B. Roy, J. K. Hill, and C. D. Thomas. 2005. A northward 
shift of range margins in British Odonata. Glob. Change Biol. 11: 
502–506.

Hill, M. P., B. Gallardo, and J. S. Terblanche. 2017. A global assessment of 
climatic niche shifts and human influence in insect invasions. Glob. Ecol. 
Biogeogr. 26: 679–689.

Hof, C., M. Brändle, D. M. Dehling, M. Munguía, R. Brandl, M. B. Araújo, and 
C. Rahbek. 2012. Habitat stability affects dispersal and the ability to track 
climate change. Biol. Lett. 8: 639–643.

Hyseni, C., and R. C. Garrick. 2019. Ecological drivers of species distributions 
and niche overlap for three subterranean termite species in the Southern 
Appalachian Mountains, USA. Insects 10: 33.

Hyseni, C., J. Heino, L. M. Bini, U. Bjelke, and F. Johansson. 2021. The impor-
tance of blue and green landscape connectivity for biodiversity in urban 
ponds. Basic Appl. Ecol. 57: 129–145.

IPCC. 2014. Climate Change 2013 – the physical science basis: working group 
I contribution to the Fifth Assessment Report of the Intergovernmental 
Panel on Climate Change. Cambridge University Press, Cambridge.

Jeglum, J., S. Sandring, P. Christensen, A. Glimskär, A. Allard, L. Nilsson, 
and J. Svensson. 2011. Main ecosystem characteristics and distribution 
of wetlands in boreal and alpine landscapes in Northern Sweden under 
climate change, pp. 193–218. In O. Grillo and G. Venora (eds.), Ecosyst. 
Biodivers. InTech, Rijeka, Croatia.

Jenkins, D. A., N. Lecomte, G. Andrews, G. Yannic, and J. A. Schaefer. 2020. 
Biotic interactions govern the distribution of coexisting ungulates in 
the Arctic Archipelago – A case for conservation planning. Glob. Ecol. 
Conserv. 24: e01239.

Johnston, A., M. Ausden, A. M. Dodd, R. B. Bradbury, D. E. Chamberlain, F. 
Jiguet, C. D. Thomas, A. S. C. P. Cook, S. E. Newson, N. Ockendon, et al. 
2013. Observed and predicted effects of climate change on species abun-
dance in protected areas. Nat. Clim. Change. 3: 1055–1061.

Kalkman, V. J., J.-P. Boudot, R. Bernard, G. De Knijf, F. Suhling, and T. 
Termaat. 2018. Diversity and conservation of European dragonflies and 
damselflies (Odonata). Hydrobiologia. 811: 269–282.

Karger, D. N., O. Conrad, J. Böhner, T. Kawohl, H. Kreft, R. W. Soria-Auza, N. 
E. Zimmermann, H. P. Linder, and M. Kessler. 2017. Climatologies at high 
resolution for the earth’s land surface areas. Sci. Data. 4: 170122.

Keller, D., and R. Holderegger. 2013. Damselflies use different movement strategies 
for short- and long-distance dispersal. Insect Conserv. Divers. 6: 590–597.

Langham, G. M., J. G. Schuetz, T. Distler, C. U. Soykan, and C. Wilsey. 2015. 
Conservation status of North American Birds in the face of future climate 
change. PLoS One. 10: e0135350.

Legendre, P., and M. J. Anderson. 1999. Distance-based redundancy analysis: 
testing multispecies responses in multifactorial ecological experiments. 
Ecol. Monogr. 69: 1–24.

Lenoir, J., and J.-C. Svenning. 2015. Climate-related range shifts – a global mul-
tidimensional synthesis and new research directions. Ecography. 38: 15–28.

Leta, S., T. J. Beyene, E. M. De Clercq, K. Amenu, M. U. G. Kraemer, and C. W. 
Revie. 2018. Global risk mapping for major diseases transmitted by Aedes 
aegypti and Aedes albopictus. Int. J. Infect. Dis. 67: 25–35.

Li, F., and Y.-S. Park. 2020. Habitat availability and environmental prefer-
ence drive species range shifts in concordance with climate change. Divers. 
Distrib. 26: 1343–1356.

Maes, D., N. Titeux, J. Hortal, A. Anselin, K. Decleer, G. De Knijf, V. 
Fichefet, and M. Luoto. 2010. Predicted insect diversity declines under 
climate change in an already impoverished region. J. Insect Conserv. 14: 
485–498.

Mair, L., and A. Ruete. 2016. Explaining spatial variation in the recording ef-
fort of citizen science data across multiple taxa. PLoS One. 11: e0147796.

Mammola, S., J. Pétillon, A. Hacala, J. Monsimet, S.-L. Marti, P. Cardoso,
and D. Lafage. 2021. Challenges and opportunities of species distribu-
tion modelling of terrestrial arthropod predators. Divers. Distrib. 27: 
2596–2614.

Manel, S., H. C. Williams, and S. J. Ormerod. 2001. Evaluating presence–ab-
sence models in ecology: the need to account for prevalence. J. Appl. Ecol. 
38: 921–931.

Markovic, D., S. Carrizo, J. Freyhof, N. Cid, S. Lengyel, M. Scholz, H. 
Kasperdius, and W. Darwall. 2014. Europe’s freshwater biodiversity under 
climate change: distribution shifts and conservation needs. Divers. Distrib. 
20: 1097–1107.

May, M. L. 2013. A critical overview of progress in studies of migration of 
dragonflies (Odonata: Anisoptera), with emphasis on North America. J. 
Insect Conserv. 17: 1–15.

McCreadie, J. W., N. Hamada, M. E. Grillet, and P. H. Adler. 2017. Alpha 
richness and niche breadth of a widespread group of aquatic insects in 
Nearctic and Neotropical streams. Freshw. Biol. 62: 329–339.

McEachin, S., J. P. Drury, C. N. Anderson, and G. F. Grether. 2022. Mechanisms 
of reduced interspecific interference between territorial species. Behav. 
Ecol. 33: 126–136.

McSweeney, C. F., R. G. Jones, R. W. Lee, and D. P. Rowell. 2015. Selecting 
CMIP5 GCMs for downscaling over multiple regions. Clim. Dyn. 44: 
3237–3260.

Mihoub, J.-B., K. Henle, N. Titeux, L. Brotons, N. A. Brummitt, and D. S. 
Schmeller. 2017. Setting temporal baselines for biodiversity: the limits of 
available monitoring data for capturing the full impact of anthropogenic 
pressures. Sci. Rep. 7: 41591.

Moore, N. W. 1964. Intra- and interspecific competition among dragonflies 
(Odonata). J. Anim. Ecol. 33: 49–71.

Nadeau, C. P., and M. C. Urban. 2019. Eco-evolution on the edge during cli-
mate change. Ecography. 42: 1280–1297.

Owens, H. L., L. P. Campbell, L. L. Dornak, E. E. Saupe, N. Barve, J. Soberón, 
K. Ingenloff, A. Lira-Noriega, C. M. Hensz, C. E. Myers, et al. 2013. 
Constraints on interpretation of ecological niche models by limited envi-
ronmental ranges on calibration areas. Ecol. Model. 263: 10–18.

Pacifici, M., W. B. Foden, P. Visconti, J. E. M. Watson, S. H. M. Butchart, K. 
M. Kovacs, B. R. Scheffers, D. G. Hole, T. G. Martin, H. R. Akçakaya,
et al. 2015. Assessing species vulnerability to climate change. Nat. Clim.
Change. 5: 215–224.

Parmesan, C. 2006. Ecological and evolutionary responses to recent climate 
change. Annu. Rev. Ecol. Evol. Syst. 37: 637–669.

Parmesan, C., and G. Yohe. 2003. A globally coherent fingerprint of climate 
change impacts across natural systems. Nature. 421: 37–42.

Patten, M. A., J. T. Bried, and B. D. Smith-Patten. 2015. Survey data matter: 
predicted niche of adult vs breeding Odonata. Freshw. Sci. 34: 1114–1122.

Peres-Neto, P., J. Olden, and D. Jackson. 2001. Environmentally constrained 
null models: site suitability as occupancy criterion. Oikos. 93: 110–120.

Peterson, A., J. Soberón, R. Pearson, R. Anderson, E. Martínez-Meyer, M. 
Nakamura, and M. Araújo. 2011. Ecological Niches and Geographic 
Distributions, Monographs in population biology, 49. Princeton University 
Press, Princeton, NJ.

Peterson, A. T., J. Soberón, and V. Sánchez-Cordero. 1999. Conservatism of 
ecological niches in evolutionary time. Science. 285: 1265–1267.

Pires, M. M., E. Périco, S. Renner, and G. Sahlén. 2018. Predicting the effects
of future climate change on the distribution of an endemic damselfly 
(Odonata, Coenagrionidae) in subtropical South American grasslands. J. 
Insect Conserv. 22: 303–319.

Platts, P. J., S. C. Mason, G. Palmer, J. K. Hill, T. H. Oliver, G. D. Powney, R. 
Fox, and C. D. Thomas. 2019. Habitat availability explains variation in 



921Environmental Entomology, 2022, Vol. 51, No. 5

climate-driven range shifts across multiple taxonomic groups. Sci. Rep. 
9: 15039.

Pörtner, H. O., and A. P. Farrell. 2008. Physiology and climate change. Science. 
322: 690–692.

Prather, C. M., S. L. Pelini, A. Laws, E. Rivest, M. Woltz, C. P. Bloch, I. D. Toro, 
C.-K. Ho, J. Kominoski, T. A. S. Newbold, et al. 2013. Invertebrates, eco-
system services and climate change. Biol. Rev. 88: 327–348.

R Core Team. 2019. R: a language and environment for statistical computing. 
R Foundation for Statistical Computing, Vienna, Austria. Available from 
https://www.R-project.org/

Rodríguez-Tapia, G., M. Rocha-Ortega, and A. Córdoba-Aguilar. 2020. An 
index to estimate the vulnerability of damselflies and dragonflies (Insecta: 
Odonata) to land use changes using niche modeling. Aquat. Insects. 41: 
254–272.

Root, T. L., J. T. Price, K. R. Hall, S. H. Schneider, C. Rosenzweig, and J. A. 
Pounds. 2003. Fingerprints of global warming on wild animals and plants. 
Nature. 421: 57–60.

Rotenberry, J. T., and P. Balasubramaniam. 2020. Connecting species’ geo-
graphical distributions to environmental variables: range maps versus 
observed points of occurrence. Ecography. 43: 897–913.

Sanderson, B. M., R. Knutti, and P. Caldwell. 2015. A representative democ-
racy to reduce interdependency in a multimodel ensemble. J. Clim. 28: 
5171–5194.

Schmitt, S., R. Pouteau, D. Justeau, F. de Boissieu, and P. Birnbaum. 2017. 
SSDM: an R package to predict distribution of species richness and ende-
mism based on stacked species distribution models. Methods Ecol. Evol. 
8: 1795–1803.

Scudder, G. G. E. 2017. The importance of insects, pp. 9–43. In R. G. Foottit and 
P. H. Adler (eds.), Insect Biodivers. Sci. Soc. Wiley-Blackwell, Malden, MA.

Serreze, M. C., and R. G. Barry. 2011. Processes and impacts of Arctic amplifi-
cation: a research synthesis. Glob. Planet. Change. 77: 85–96.

Sillero, N., and A. M. Barbosa. 2021. Common mistakes in ecological niche 
models. Int. J. Geogr. Inf. Sci. 35: 213–226.

Sinclair, B. J., K. E. Marshall, M. A. Sewell, D. L. Levesque, C. S. Willett, S. 
Slotsbo, Y. Dong, C. D. G. Harley, D. J. Marshall, B. S. Helmuth, et al. 
2016. Can we predict ectotherm responses to climate change using thermal 
performance curves and body temperatures?. Ecol. Lett. 19: 1372–1385.

Sirén, A. P. K., and T. L. Morelli. 2019. Interactive range-limit theory (iRLT):
an extension for predicting range shifts. J. Anim. Ecol. 89: 940–954.

Soberón, J., and M. Nakamura. 2009. Niches and distributional areas: 
concepts, methods, and assumptions. Proc. Natl. Acad. Sci. U.S.A. 106: 
19644–19650.

Spence, A. R., and M. W. Tingley. 2020. The challenge of novel abiotic 
conditions for species undergoing climate-induced range shifts. Ecography. 
43: 1571–1590.

Stone, L., and A. Roberts. 1990. The checkerboard score and species 
distributions. Oecologia 85: 74–79.

Suhling, F., A. Martens, and I. Suhling. 2017. Long-distance dispersal in 
Odonata: examples from arid Namibia. Austral. Ecol. 42: 544–552.

Suhling, I., and F. Suhling. 2013. Thermal adaptation affects interactions between 
a range-expanding and a native odonate species. Freshw. Biol. 58: 705–714.

Termaat, T., A. J. van Strien, R. H. A. van Grunsven, G. D. Knijf, U. Bjelke, K. 
Burbach, K.-J. Conze, P. Goffart, D. Hepper, V. J. Kalkman, et al. 2019. 
Distribution trends of European dragonflies under climate change. Divers. 
Distrib. 25: 936–950.

Thuiller, W. 2004. Patterns and uncertainties of species’ range shifts under cli-
mate change. Glob. Change Biol. 10: 2020–2027.

Thuiller, W., B. Lafourcade, R. Engler, and M. B. Araújo. 2009. BIOMOD – a 
platform for ensemble forecasting of species distributions. Ecography. 32: 
369–373.

Title, P. O., and J. B. Bemmels. 2018. ENVIREM: an expanded set of biocli-
matic and topographic variables increases flexibility and improves perfor-
mance of ecological niche modeling. Ecography 41: 291–307.

Torres, U., W. Godsoe, H. L. Buckley, M. Parry, A. Lustig, and S. P. Worner. 
2018. Using niche conservatism information to prioritize hotspots of in-
vasion by non-native freshwater invertebrates in New Zealand. Divers. 
Distrib. 24: 1802–1815.

Urban, M. C. 2015. Accelerating extinction risk from climate change. Science. 
348: 571–573.

Urban, M. C., P. L. Zarnetske, and D. K. Skelly. 2013. Moving forward: dis-
persal and species interactions determine biotic responses to climate 
change. Ann. N. Y. Acad. Sci. 1297: 44–60.

Valladares, F., S. Matesanz, F. Guilhaumon, M. B. Araújo, L. Balaguer, M. 
Benito-Garzón, W. Cornwell, E. Gianoli, M. van Kleunen, D. E. Naya, 
et al. 2014. The effects of phenotypic plasticity and local adaptation on 
forecasts of species range shifts under climate change. Ecol. Lett. 17: 
1351–1364.

Velásquez-Tibatá, J., P. Salaman, and C. H. Graham. 2013. Effects of climate 
change on species distribution, community structure, and conservation of 
birds in protected areas in Colombia. Reg. Environ. Change. 13: 235–248.

Vieira, K. S., P. F. G. Montenegro, G. G. Santana, and W. L. da S. Vieira. 2018. 
Effect of climate change on distribution of species of common horned 
frogs in South America. PLoS One. 13: e0202813.

Wagner, D. L. 2020. Insect declines in the Anthropocene. Annu. Rev. Entomol. 
65: 457–480.

Walther, G.-R., E. Post, P. Convey, A. Menzel, C. Parmesan, T. J. C. Beebee, 
J.-M. Fromentin, O. Hoegh-Guldberg, and F. Bairlein. 2002. Ecological 
responses to recent climate change. Nature. 416: 389–395.

Warren, D. L., R. E. Glor, and M. Turelli. 2010. ENMTools: a toolbox for com-
parative studies of environmental niche models. Ecography. 33: 607–611.

Watts, P. C., J. R. Rouquette, I. J. Saccheri, S. J. Kemp, and D. J. Thompson. 
2004. Molecular and ecological evidence for small-scale isolation by dis-
tance in an endangered damselfly, Coenagrion mercuriale. Mol. Ecol. 13: 
2931–2945.

Wellenreuther, M., K. W. Larson, and E. I. Svensson. 2012. Climatic niche di-
vergence or conservatism? Environmental niches and range limits in eco-
logically similar damselflies. Ecology 93: 1353–1366.

Wilson, R., Z. Davies, and C. Thomas. 2007. Insects and climate change: 
processes, patterns and implications for conservation, pp. 245–279. 
In A. Stewart, T. New, and O. Lewis (eds.), Insect Conserv. Biol. CAB 
International Publishing, Cambridge, MA.

Wissinger, S. A. 1992. Niche overlap and the potential for competition and 
intraguild predation between size-structured populations. Ecology. 73: 
1431–1444.

Xu, L., R. B. Myneni, F. S. Chapin Iii, T. V. Callaghan, J. E. Pinzon, C. J. Tucker, 
Z. Zhu, J. Bi, P. Ciais, H. Tømmervik, et al. 2013. Temperature and vege-
tation seasonality diminishment over northern lands. Nat. Clim. Change. 
3: 581–586.

Yang, L. H., and V. H. W. Rudolf. 2010. Phenology, ontogeny and the effects of 
climate change on the timing of species interactions. Ecol. Lett. 13: 1–10.

https://www.R-project.org/

