1	The G.m. morsitans (Diptera: Glossinidae) genome as a source of
2	microsatellite markers for other tsetse fly (Glossina) species
3	
4	Chaz Hyseni ^{1*} , Jon S. Beadell ¹ , Zaneli Gomez Ocampo ¹ , Johnson O. Ouma ² , Loyce M. Okedi ³ , Michael
5	W. Gaunt ⁴ , Adalgisa Caccone ¹
6	
7	
8	¹ Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
9	² Trypanosomiasis Research Centre, Kenya Agricultural Research Institute, Kukuyu, Kenya
10	³ National Livestock Resources Research Institute, Tororo, Uganda
11	⁴ London School of Tropical Medicine, London, United Kingdom
12	
13	
14	
15	
16	
17	
18	[*] E-mail: chaz.hyseni@aya.yale.edu

19 Abstract

20	We searched the Glossina morsitans morsitans genome for short sequence repeats (SSR) in order to
21	adapt polymorphic microsatellite markers to other species of Glossina, G. fuscipes fuscipes and G.
22	pallidipes, two major vectors of African trypanosomiasis. We tested 30 loci containing perfect di-, tri-, or
23	tetranucleotide repeats. We identified seven polymorphic loci that amplified across both G.f. fuscipes
24	and G. pallidipes samples, as well as seven additional loci that were variable in just one species. Five of
25	these fourteen loci were homozygous in males of one or both species and are likely to be X-linked.
26	Although the success rate of adapting SSR markers from the G.m. morsitans genome for use in other
27	species was not very high, this process yielded several polymorphic markers that should be useful in
28	future studies of tsetse ecology and evolution.
29	
30	
31	
32	
33	
34	
35	
36	
37	

38

39 Trypanosomiasis is responsible for thousands of infected people and millions of cattle deaths with 40 serious repercussions for public health and economic development in 37 countries in sub-Saharan Africa (http://www.fao.org/Ag/againfo/programmes/en/paat/disease.html). The tsetse species Glossina 41 42 fuscipes and Glossina pallidipes are primary vectors of both human and animal forms of African 43 trypanosomiasis (sleeping sickness and nagana, respectively). Molecular tools are increasingly being 44 used to garner information about the population structure, reproductive behavior, and other aspects of tsetse ecology and life history (reviewed in Krafsur 2009) pertinent to the design of more effective 45 46 vector control strategies. While microsatellite markers have been characterized for both G. fuscipes fuscipes (Abila et al. 2008, Brown et al. 2008) and G. pallidipes (Ouma et al. 2003, Ouma et al. 2006), 47 48 many of these loci are difficult to score and exhibit high null allele frequencies. For G.f. fuscipes, a few 49 additional markers have been isolated as a result of recent efforts to adapt loci from other tsetse species 50 (Beadell et al. 2010, unpubl. data). Approximately 13 autosomal loci are now available for G.f. fuscipes 51 and 8 for G. pallidipes. Additional autosomal markers are required for exploring fine-scale structuring of 52 populations, for increasing the certainty of estimates of effective population size, as well as quantifying 53 dispersal and gene flow. Vector control would also benefit from further insight into the reproductive 54 behavior of tsetse. Development of X-linked loci would help provide such insight.

55 Recently, the Wellcome Trust Sanger Institute completed whole genome shotgun sequencing of G. morsitans morsitans (http://www.sanger.ac.uk/Projects/G morsitans/). Here, we explore the utility of 56 57 using the G.m. morsitans genome as a source of short sequence repeats (SSR) for use in other tsetse species by testing a panel of SSRs for cross-amplification and variability in *G.f. fuscipes* and *G. pallidipes*. 58 59 We used both MISA (MicroSatellite identification tool, Thiel et al. 2003) and Msatfinder (Thurston & 60 Field 2005) to search the G.m. morsitans genome. An initial screening for 1-, 2-, 3-, 4-, 5- and 6nucleotide SSRs greater than 30bp in length produced over 6,000 results. From these we selected di-, 61 62 tri- and tetranucleotide SSRs 50-200bp in size with at least 100bp of sequence flanking either side and

63	used a script written in the stream editor program, sed, to extract the up- and downstream flanking
64	regions. These sequences were run through <i>Msatcommander</i> (Faircloth 2008), which includes a Primer3
65	(Rozen & Skaletsky 2000) extension. Primers were designed in <i>Msatcommander</i> by modifying the
66	default Primer3 settings. Thirty loci were identified for cross-amplification testing.
67	Loci were tested on samples collected from sites in western Uganda: Kabunkanga (G.f. fuscipes,
68	n=22) and Murchison Falls (<i>G. pallidipes</i> , n=23). Six of the twenty-three <i>G.p.</i> samples and eight of the
69	twenty-two G.f.f. samples were male. Individual flies were sexed by inspection of genitalia in order to
70	permit identification of X-linked loci. Since tsetse males are heterogametic, male individuals are
71	expected to be homozygous in X-linked loci.
72	DNA was extracted from fly legs using the Qiagen DNEasy Tissue Kit (Qiagen, Inc.) as per the
73	manufacturer's protocol. We used the M13-tailed primer method (Boutin-Ganache et al. 2001) to obtain
74	individual genotypes. Forward primers were 5'-tailed with a 15-mer M13 sequence (5'-
75	TCCCAGTCACGACGT-3') and in addition to the unmodified reverse primers, reactions included a third
76	primer with a fluorescent dye attached to the same M13 sequence. We prepared 12.5 μ L reactions using
77	1x PCR Buffer (50mM KCl, 10mM Tris-HCl, pH 8.3) and 2 mM MgCl ₂ (Applied Biosystems), 0.22 mM each
78	dNTP and 3μg BSA (New England Biolabs), 5 pmol fluorescently-labeled M13 primer, 5 pmol reverse
79	primer, 0.4 pmol M13-tailed forward primer and 0.5 units AmpliTaq Gold DNA Polymerase (Applied
80	Biosystems). PCR amplification was done via touchdown thermal cycling: after the initial denaturation
81	(95°C for 5 min), reactions cycled through 95°C for 30s, 60-49°C (1°C decrement/cycle) for 25s and 72°C
82	for 30s in the first step, going through an additional 40 cycles of 95°C, 48°C and 72°C, and finally a 15-
83	minute extension at 72°C. Annealing temperatures of 53°C to 48°C in the second step and 60-54°C to 60-
84	49°C in the first step were tested to ensure that lower annealing temperatures did not result in stronger
85	PCR product and lower null allele frequencies due to non-specific amplification. We tested several loci

86	using 5 pmol each of fluorescently-labeled forward primer and unlabeled reverse primer, which along
87	with lower annealing temperatures enhanced PCR amplification compared to the above three-primer
88	method. PCR amplicons were run through an Applied Biosystems 3730xl DNA Analyzer and the resulting
89	data were analyzed using Genemarker 1.91 (SoftGenetics).

90 Observed and expected heterozygosity values were calculated using Genalex 6.2 (Peakall & Smouse 91 2006). We used Genepop 4.0.10 (Rousset 2008) to test for departures from Hardy-Weinberg equilibrium 92 (HWE) and to determine whether any linkage disequilibrium (LD) was present among loci. Loci 93 developed in this study were also tested for linkage with autosomal loci developed for prior studies 94 (G.f.f.: Beadell et al. 2010; G.p.: Ouma et al. 2003, Ouma et al. 2006). We estimated null allele 95 frequencies in Microchecker (Oosterhout et al. 2004) using the method of Oosterhout et al. (2006) and 96 in FreeNA (Chapuis & Estoup 2007) using the method of Dempster et al. (1977). Calculations in Genepop 97 were performed using a burn-in of 10,000 and 1,000 batches with 10,000 iterations per batch. We 98 performed 10,000 randomizations in Microchecker and FreeNA.

99 Twenty-four of the thirty loci selected from the G.m. morsitans genome amplified in either G.f.f., 100 G.p. or both species. Of these 24, only 15 loci were easily scored and polymorphic in at least one species. 101 We only reported 14 loci here (see Table 1), because locus GmmC22, polymorphic in G.p., appeared to 102 be physically linked to a gene (GenBank accession no. AM940018.1). Although G.p. and G.m.m. share 103 more recent ancestry than G.f.f. and G.m.m. (Dyer et al. 2008), transfer of loci from G.m.m. to G.p. was 104 no more successful than transfer to G.f.f. We recovered 10 polymorphic markers for G.p. and 11 105 polymorphic markers for G.f.f.; only 7 loci were polymorphic in both species. In G.f.f., the success rate of 106 adapting loci from the G.m.morsitans genome (11 polymorphic loci out of 30 tested) was lower 107 compared with the success rate of isolating polymorphic loci from a fuscipes-specific library (17 108 polymorphic loci out of 20 tested; unpubl. data).

Allele numbers varied from 2 to 8 for *G.f.f.* and 2 to 16 for *G.p.* Observed heterozygosities ranged from 0.09 to 0.86 for *G.f.f.* and 0.13 to 0.87 for *G.p.* After applying sequential Bonferroni correction (Holm 1979), the only significant LD among loci characterized in this study was observed between GmmL17 and GmmP07 in the *G.p.* samples. When taking into account previously developed loci, significant linkage was, again, only observed in *G.p.*, between GmmL11 and locus B115 of Ouma et al (2006). The only locus to exhibit significant deviation from HWE after sequential Bonferroni correction was locus GmmL17 in *G.f.f.*

116 Based on the observation that all male samples are homozygous, locus GmmL17 is likely X-linked. 117 Using the criterion of male homozygosity, we identified five loci with potential X-linkage: GmmC15, 118 GmmD03, GmmF10, GmmL17 and GmmP07. While G.p. males were homozygous for locus GmmC15, 119 however, there was one heterozygous male in G.f.f. X-linkage of loci GmmF10, GmmL17 and GmmP07 is 120 corroborated by low p-values for HWE tests and high (above 0.1) null allele frequencies, and loci 121 GmmL17 and GmmP07 were, at least in G.p., also significantly linked to each other. Fluorescence in situ 122 hybridization (FISH) has been used to map microsatellite markers (Stratikopoulos et al. 2008). FISH will 123 be employed in future studies to confirm location in the X chromosome of the loci we suspect to be Xlinked. 124

The putative X-linked loci we identified will be valuable for remating studies, where SSRs are used to estimate the number of unique male contributors to female sperm pools (Bonizzoni et al. 2002). The other markers reported here should provide additional power for resolving fine-scale spatial structuring of tsetse populations and determining the temporal stability of these populations. These autosomal markers, in addition to the 13 that are already developed for *G.f.f.* and 8 for *G.p.*, will also allow more accurate estimation of effective population size, of gene flow and migration rates, and will aid in

131	characterizing othe	er facets of tsetse	ecology and life	e history relevant	to the design an	d improvement of
	0				0	

132 vector control strategies.

133 Acknowledgement

134 Funding was provided by the NIH (R01AI068932) and WHO-TDR (80132) grants.

135 *References*

- 136 Abila PP, Slotman MA, Parmakelis A, et al. (2008) High levels of genetic differentiation between Ugandan
- 137 Glossina fuscipes fuscipes populations separated by Lake Kyoga. *PLoS Neglected Tropical*
- 138 *Diseases*, **2**, e242.
- 139 Beadell JS, Hyseni C, Abila PP, et al. (2010) Phylogeography and population structure of Glossina fuscipes
- 140 fuscipes in Uganda: implications for control of tsetse. *PLoS Neglected Tropical Diseases*, **4**, e636.
- 141 Bonizzoni M, Katsoyannos BI, Marguerie R, et al. (2002) Microsatellite analysis reveals remating by wild
- 142 Mediterranean fruit fly females, Ceratitis capitata. *Molecular Ecology*, **11**, 1915-1921.
- Boutin-Ganache I, Raposo M, Raymond M, Deschepper CF (2001) M13-tailed primers improve the
- 144 readability and usability of microsatellite analyses performed with two different allele-sizing
- 145 methods. *Biotechniques*, **31**, 24-27.
- Brown JE, Komatsu KJ, Abila PP, et al. (2008) Polymorphic microsatellite markers for the tsetse fly
- Glossina fuscipes fuscipes (Diptera: Glossinidae), a vector of human African trypanosomiasis.
 Molecular Ecology Resources, 8, 1506-1508.
- Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation.
 Molecular Biology and Evolution, **24**, 621-631.
- 151 Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM
- algorithm. *Journal of the Royal Statistical Society Series B-Methodological*, **39**, 1-38.

153	Dyer NA, Lawton SP, Ravel S, et al. (2008) Molecular phylogenetics of tsetse flies (Diptera: Glossinidae)
154	based on mitochondrial (COI, 16S, ND2) and nuclear ribosomal DNA sequences, with an
155	emphasis on the palpalis group. Molecular Phylogenetics and Evolution, 49, 227-239.
156	Faircloth BC (2008) MSATCOMMANDER: detection of microsatellite repeat arrays and automated, locus-
157	specific primer design. <i>Molecular Ecology Resources</i> , 8 , 92-94.
158	Holm S (1979) A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics,
159	6 , 65-70.
160	Krafsur ES (2009) Tsetse flies: genetics, evolution, and role as vectors. Infection, Genetics and Evolution,
161	9 , 124-141.
162	Ouma JO, Cummings MA, Jones KC, Krafsur ES (2003) Characterization of microsatellite markers in the
163	tsetse fly, Glossina pallidipes (Diptera: Glossinidae). Molecular Ecology Notes, 3, 450-453.
164	Ouma JO, Marquez JG, Krafsur ES (2006) New polymorphic microsatellites in Glossina pallidipes (Diptera:
165	Glossinidae) and their cross-amplification in other tsetse fly taxa. Biochemical Genetics, 44, 471-
166	477.
167	Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for
168	teaching and research. Molecular Ecology Notes, 6, 288-295.
169	Rousset F (2008) GENEPOP ' 007: a complete re-implementation of the GENEPOP software for Windows
170	and Linux. Molecular Ecology Resources, 8, 103-106.
171	Rozen S, Skaletsky H (2000) Primer3 on the www for general users and for biologist programmers. In:
172	Bioinformatics Methods and Protocols: Methods in Molecular Biology (eds Krawetz S, Misener S),
173	pp. 365-386. Humana Press, Totowa, New Jersey.
174	Stratikopoulos EE, Augustinos AA, Petalas YG, et al. (2008) An integrated genetic and cytogenetic map
175	for the Mediterranean fruit fly, Ceratitis capitata, based on microsatellite and morphological
176	markers. <i>Genetica</i> , 133 , 147-157.

177	Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST databases for the development and
178	characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theoretical and
179	Applied Genetics, 106 , 411-422.
180	Thurston M, Field D (2005) MSATFINDER: Detection and characterization of microsatellites.
181	Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for
182	identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes, 4,
183	535-538.
184	van Oosterhout C, Weetman D, Hutchinson WF (2006) Estimation and adjustment of microsatellite null

185 alleles in nonequilibrium populations. *Molecular Ecology Notes*, **6**, 255-256.

Table 1.

Locus	Primer Sequence (5'-3')	G.m.m genome: Sequence ID	G.m.m genome: (Motif)Units [Fragment Size]	Species	Allele Size Range	No. of Flies (% Amplified)	No. of Alleles	Ho	H _E	H-W(P)	X-linked	Null (O et al)	Null (D et al)	
GmmA06	F: ACTTCCATGTTATGTTCGTTGC R: TGCCTTAGTTGAGAAACTCTGC	Tflv 23-t487a06.g1k	(AC)31	G.f.f	146-174	22 (100%)	7	0.727	0.699	0.728		-0.035	0.000	
		/	[209]	G.p	154-166	23 (100%)	3	0.130	0.127	1.000		-0.066	0.000	
GmmB20	F: AAATGCATGTCTAACTGTCCG	Tflv 23-t572b20.a1k	(GT)33	G.f.f	171-181	22 (100%)	3	0.500	0.635	0.419		0.100	0.068	
	R: AGCAAAAGGCAACTAAAGTGATG	/	[222]	G.p	221-281	23 (100%)	16	0.870	0.895	0.344		0.004	0.000	
GmmC15	F: ACTGCATCTGCCTCTGTCG	Tfly_23-t601c15.p1k	(ATT)20	G.f.f	193-211	22 (100%)	4	0.409	0.506	0.178		0.080	0.068	
	R. IGAACGAGAAAATGTGAATGGTAAG		[208]	G.p	190-211	23 (100%)	5	0.609	0.723	0.086	-	0.063	0.066	
GmmC17	F: TGCGCTTTGAACGGAACG	Tfly_23-t506c17.p1k	(ATGT)14	G.f.f	184-188	22 (100%)	2	0.091	0.089	1.000		-0.047	0.000	
			[224]	G.p	190-202	23 (100%)	2	0.304	0.322	1.000		0.016	0.011	
GmmD03	F: TGCACTTCACCGATTGCAC	Tfly_23-t605d03.q1k	(AAT)20 [189]	G.J.J	151-160	22 (100%)	3	0.136	0.132	1.000	-	-0.070	0.000	
				G.f.f	140 150	22 (100%)	E			0.400		0.017	0.056	
GmmD15	F: GCATCACACTTTGCTTGCG R: CGTTGGAAACTAGACATCTCACG	Tfly_23-t535d15.q1k	(GT)59 [227]	G.j.j	149-159	22 (100%)	5	0.545 No ai	0.000 mnlificati	0.409 on		0.017	0.050	
	E: TGCCTTTCGATAGAGAAACCATC	Tfly_23-t606f10.q1k	(AC)/12	G.f.f	iff No amplification									
GmmF10	R: ACCTGGACACTTATACCGCTC		[248]	G.p	186-200	23 (100%)	6	0.565	0.773	0.049	-	0.120	0.117	
	F: ACCCAGATAACCTATATTGCTCG	.	(AT)27	G.f.f	148-182	22 (100%)	7	0.864	0.829	0.121		-0.042	0.000	
GmmH09	R: CGTTCAGGCAGATACGAAAATTG	1fly_23-t508h09.p1k	[191]	G.p	<i>p</i> Monomorphic									
CrameKOC	F: TAACGTGCATGTGCGTGTG R: CCATCAATACGAGCAGACCG	Tfly_23-t504k06.q1k	(ATGT)12 [154]	G.f.f				Мо	nomorph	ic				
GIIIIIKUU				G.p	123-131	23 (100%)	3	0.435	0.414	1.000		-0.056	0.000	
GmmK22	F: ACGCTTACGTTTCCGTTACAC	Tfly 22 +512622 n16	(GTT)19 [228]	G.f.f				Мо	nomorph	ic				
GIIIIIKZZ	R: AAGCTAACCGAACCAGCAC	my_23-t515k22.p1k		G.p	192-198	23 (100%)	3	0.478	0.569	0.288		0.069	0.038	
Gmm103	F: ACAGTCCAATTTTCGCCCG R: GGCCAACAATGTCATAAACCG	Tfly 23-t545103 a1k	(AT)28 [210]	G.f.f	181-187	21 (95.5%)	3	0.381	0.528	0.290		0.129	0.079	
		my_23-(345)05.qrk		G.p				Moi	nomorph	ic				
GmmL11	F: CCACCACTAACAACGACAGC	Tfly_23-t516l11.p1k	(AT)27 [249]	G.f.f	216-246	22 (100%)	8	0.682	0.736	0.194		0.020	0.032	
	R: TGGCTGGTTACAAGATTGCAC			G.p	250-252	23 (100%)	2	0.696	0.464	0.020		-0.448	0.000	
GmmL17	F: CGTACATGCAAGGCAGAGC	Tfly_23-t608l17.q1k	(GGTT)10 [273]	G.f.f	283-299	22 (100%)	4	0.227	0.496	0.001*	+	0.233	0.191	
	R: TCAACTGAAACCGAAAGAGC			G.p	277-285	23 (100%)	2	0.217	0.322	0.165	+	0.129	0.092	
GmmP07	F: ACTGACATATTGAGTTGAAAGGGG	Tfly 23-t516p07.a1k	k (ATT)18 [234]	G.f.f	213-234	22 (100%)	4	0.227	0.357	0.038	+	0.137	0.121	
	R: TCTTCCGTTAAATACAGAGTGCAG	/		G.p	231-246	22 (100%)	4	0.348	0.563	0.010	+	0.168	0.142	

Allele size ranges represent size ranges of amplified DNA minus the 15-mer M13 sequence. The asterisk (*) indicates significance after sequential Bonferroni correction. The plus sign (+) indicates a putative X-linked locus, based on the absence of heterozygous males from both species. The minus sign (-) indicates a potentially X-linked locus based on only one species. Heterozygosity calculated using *Genalex* 6.2: H_0 - observed heterozygosity and H_E - expected heterozygosity. P-values for the Hardy-Weinberg (H-W(P)) equilibrium test computed with *Genepop 4.0.10*. Null allele frequencies estimated in *Microchecker* based on Oosterhout et al. (2006) (Null (O et al)) and *FreeNA* based on Dempster et al. (1977) (Null (D et al)).