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Abstract

Background: Glossina fuscipes, a riverine species of tsetse, is the major vector of human African trypanosomiasis
(HAT) in sub-Saharan Africa. Understanding the population dynamics, and specifically the temporal stability, of
G. fuscipes will be important for informing vector control activities. We evaluated genetic changes over time in
seven populations of the subspecies G. f. fuscipes distributed across southeastern Uganda, including a zone of
contact between two historically isolated lineages. A total of 667 tsetse flies were genotyped at 16 microsatellite
loci and at one mitochondrial locus.

Results: Results of an AMOVA indicated that time of sampling did not explain a significant proportion of the
variance in allele frequencies observed across all samples. Estimates of differentiation between samples from a
single population ranged from approximately 0 to 0.019, using Jost’s DEST. Effective population size estimates using
momentum-based and likelihood methods were generally large. We observed significant change in mitochondrial
haplotype frequencies in just one population, located along the zone of contact. The change in haplotypes was
not accompanied by changes in microsatellite frequencies, raising the possibility of asymmetric mating
compatibility in this zone.

Conclusion: Our results suggest that populations of G. f. fuscipes were stable over the 8-12 generations studied.
Future studies should aim to reconcile these data with observed seasonal fluctuations in the apparent density of
tsetse.

Introduction
Tsetse flies, Glossina spp (Diptera: Glossinidae) transmit
several species of pathogenic trypanosomes causing
Human African Trypanosomiasis (HAT) and African
Animal Trypanosomiasis (AAT). HAT affects human
welfare directly through the chronic and acute forms of
the disease caused by Trypanosoma brucei gambiense
and T. b. rhodesiense respectively. AAT, on the other
hand, stands as a major obstacle to the development of
more efficient and sustainable livestock production sys-
tems in tsetse-infested areas [1]. A major challenge to
controlling HAT is lack of suitable prophylactic drugs
and vaccines against trypanosomiasis. Furthermore, che-
motherapeutic agents for treatment of HAT are expen-
sive, difficult to administer in remote areas and exhibit
poor safety profiles. Consequently, vector control

remains a viable alternative for large-scale control of
trypanosomiasis.
Understanding tsetse population dynamics is critical

for determining which control strategy is most appropri-
ate (e.g., suppression, eradication), for choosing the best
method for enacting that strategy (e.g., traps, insecti-
cide-treated cattle, sterile insect technique), and for
determining the scale at which vector control activities
must be implemented [2]. Determinants of population
dynamics include both life history and ecological corre-
lates such as mating system, dispersal ability and popu-
lation size, which influence the extent to which tsetse
populations can recover from refugia following interven-
tion, or re-colonize a cleared zone from neighboring
sources. Recently, the use of population genetics has
provided insights into tsetse ecology [3], with important
ramifications for the implementation of control pro-
grams [4]. For example, studies of tsetse in Guinea and
Senegal have identified populations that are sufficiently
isolated to warrant attempts at complete elimination
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[5-7]. Elsewhere though, studies have documented rela-
tively high levels of gene flow, necessitating integration
of barriers into elimination schemes [8] or warranting
an area-wide control effort that encompasses the disper-
sal-linked populations [9,10].
Across Africa, Glossina fuscipes is one of the most

important vectors of HAT, transmitting an estimated
90% of all disease cases [11]. Glossina fuscipes is a
member of the palpalis group of tsetse, which inhabit
low bushes or forests at the margins of rivers, lakes or
temporarily-flooded scrub land. In eastern Africa,
populations of the subspecies G. f. fuscipes appear to
respond to seasonal weather patterns, often disappear-
ing during the bi-annual dry season from sites where
they were previously abundant [12]. If populations in
refugia are small, then seasonal bottlenecks could
result in large temporal changes in gene frequencies.
In order to investigate the impact of seasonal climate
changes on population size and to gain further insight
into the population dynamics of G. f. fuscipes, we eval-
uated temporal changes in gene frequencies at one
mitochondrial locus and 16 microsatellite loci in multi-
ple Ugandan populations. Our sampling scheme
included three populations situated at a zone of con-
tact between two divergent lineages of G. f. fuscipes.
These two lineages exhibit distinct mitochondrial DNA
(mtDNA) haplotypes and strong differentiation at
microsatellite loci, suggesting a long history of isola-
tion, and providing a unique opportunity to monitor
their interaction over time [9,10].

Materials and methods
Tsetse collection and study area
Tsetse flies were collected using biconical traps [13] dur-
ing the period from March 2008 to January 2010. All sites
were sampled in 2008 [10] and then at least one year later
in 2009 or 2010. Four sites were also sampled a third time
(Table 1). Each fly was stored individually in 80% ethanol.
Tsetse collections were conducted at seven sites span-

ning central and southeastern Uganda (Figure 1). These
sites generally reflected the riverine/woodland habitat pre-
ferred by G. fuscipes, but varied somewhat in regard to the
immediate environment. Sites at Busime (BU) and Junda
(JN) were located in a transition zone between marsh and
woodland on the edge of Lake Victoria and Lake Kyoga,
respectively. Sites at Bunghazi (BN), Dokolo/Otuboi (OT)
and Okame (OK) were situated along permanent streams
in a region of mixed agriculture and pastureland. Sampling
at Mukongoro (MK) was conducted at the margin of
ephemeral wetlands associated with rice cultivation. Sam-
pling at Masindi (MS) was conducted within a region of
banana and sugar cane plantations.
The study sites spanned a zone of contact between

two divergent groups of G. fuscipes co-occuring in
Uganda [9,10]. Sites MK and OT were situated north of
the zone of contact and flies here were expected to pos-
sess solely northern mtDNA haplotypes. Sites BN, JN,
and MS were located at the zone of contact and flies
here were expected to possess both northern and south-
ern haplotypes. Sites BU and OK were located south of

Table 1 Indices of molecular diversity at mitochondrial and microsatellite loci for temporal samples of G. f. fuscipes

Microsatellites Mitochondrial DNA

Sample Date of Sampling N Allelic Richness Ho He N No. haplotypes Haplotype diversity Nucleotide diversity

BN - 0 March 2008 32 4.2 0.529 0.578 15 3 0.648 0.00538

BN - 8 March 2009 40 3.9 0.568 0.609

BN - 12 October 2009 64 4.1 0.549 0.574 16 4 0.692 0.00466

BU - 0 March 2008 39 3.5 0.459 0.485 17 1 0.000 0.00000

BU - 8 March 2009 40 3.4 0.476 0.485

BU - 12 October 2009 40 3.4 0.464 0.477 19 1 0.000 0.00000

JN - 0 March 2008 40 3.2 0.479 0.489 19 3 0.444 0.00731

JN - 13 January 2010 18 3.1 0.460 0.485 18 1 0.000 0.00000

MK - 0 March 2008 40 2.9 0.487 0.460 21 2 0.495 0.00093

MK - 8 March 2009 24 3.0 0.455 0.431

MK - 12 November 2009 22 3.1 0.418 0.445 21 2 0.467 0.00088

MS - 0 March 2008 40 3.7 0.568 0.547 18 2 0.471 0.00886

MS - 13 January 2010 17 4.4 0.562 0.597 17 3 0.559 0.00964

OK - 0 March 2008 39 3.3 0.452 0.507 17 3 0.471 0.00094

OK - 8 March 2009 40 3.4 0.563 0.546

OK - 12 October 2009 39 3.4 0.547 0.552 18 2 0.294 0.00055

OT - 0 July 2008 53 4.0 0.508 0.535 20 3 0.426 0.00122

OT - 11 November 2009 40 3.7 0.514 0.540 20 4 0.537 0.00131
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the zone of contact and flies at these sites were expected
to possess exclusively southern mtDNA haplotypes.

DNA Extraction
DNA was extracted from tsetse legs using NucleoSpin
96 Tissue Kits (Clontech, Mountain View, CA) or
DNeasy kits (Qiagen, Valencia, CA) following the manu-
facturer’s protocols.

Mitochondrial DNA sequencing
PCR was used to amplify a 570 bp fragment of mtDNA
from a random subset of flies from each population

using the primers COIF1 (CCT CAA CAC TTT TTA
GGT TTA G) and COIIR1 (GGT TCT CTA ATT TCA
TCA AGT A) as described by [10]. We amplified
COIF1/COIIR1 in a 25 μl PCR reaction containing 1 ×
buffer (GoTaq colorless, Promega), 0.8 mM each dNTP,
0.4 mM primers, 1.5 mM MgCl2 and 0.5 U Go Taq
polymerase. The amplification involved a denaturation
step at 95°C for 8 min, followed by 50 cycles each at 94°
C for 30 s, 51°C for 30 s, 72°C for 45 s, with a final
extension step at 72°C for 7 min. PCR products were
sequenced using an ABI Model 3730 automated sequen-
cer (Applied Biosystems, Foster City, CA, USA).
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Figure 1 Map of sites at which populations of G. f. fuscipes were sampled in Uganda. Location codes are shown in Table 1. The dotted
line indicates the approximate extent of a zone of contact between two historically isolated groups of tsetse.
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Electropherograms were visually inspected and
sequences were trimmed to remove poor quality data.
The resulting sequences (530 bp) were aligned by eye
using the computer program Sequencher 4.2.2 (Gene
Codes Corporation).

Microsatellite genotyping
We genotyped individual flies at 16 loci. We used 11 of
the 13 loci described by [10], excluding D05 and Pgp17
due to possible null allele problems. We also employed
five new dinucleotide loci identified in the G. morsitans
genome and optimized for use in G. fuscipes: GmmA06,
GmmB20, GmmD15, GmmL03, GmmL11 [14]. Amplifi-
cations were performed with fluorescently labeled for-
ward primers (6-FAM, HEX and NED) using a
touchdown PCR (10 cycles of annealing at progressively
lower temperatures from 60°C to 51°C followed by 35
cycles at 50°C) in 12.5 μl reaction volumes employing
1 × buffer, 0.8 mM dNTPs, 2.0 mM MgCl2 and 0.5 U
Go Taq polymerase. PCR products were multiplexed in
groups of two or three and then genotyped on the ABI
3730 automated sequencer. Alleles were scored using
the program Genemarker v 5.0 (SoftGenetics) with man-
ual editing of the automatically scored peaks.

Marker validation and genetic diversity
Microsatellite loci were evaluated for Hardy Weinberg
equilibrium (HWE) and linkage disequilibrium (LD)
using Genepop version 4.0 [15]. Markov chain para-
meters were set at 10,000 dememorizations, 1000
batches, 10,000 iterations per batch for HWE and
100,000 dememorizations,1000 batches,10,000 iterations
per batch for LD. We used the method of [16] as imple-
mented in MultiTest v.1.2 to correct for multiple tests.
Locus- and population-specific estimates of microsatel-
lite allele frequencies were generated using the program
Genalex version 6.3 [17]. We used the program FSTAT
version 3.1 [18] to calculate allelic richness and the pro-
gram Arlequin v. 3.5 [19] to calculate observed (Ho) and
expected (He) heterozygosity for each population.
DnaSP version 5.0 [20] was used to calculate mtDNA
haplotype diversity (Hd) and nucleotide diversity (π).

Temporal genetic differentiation and population stability
For microsatellite data, we used Jost’s DEST [21] to
quantify genetic differentiation between populations and
between temporal samples from the same population.
DEST provides a less-biased estimate of differentiation
than FST and related statistics, especially when estimated
using highly polymorphic microsatellite loci [22]. Locus-
specific calculations of DEST were performed using the
web-based program SMOGD [23] and then averaged
across loci. For mtDNA data, we used Fisher’s exact test
and the statistical software SAS version 9.1 to test for

differences in haplotype frequencies among temporal
samples from the same population. For both microsatel-
lite and mtDNA data, we performed an analysis of
molecular variance (AMOVA) as implemented in Arle-
quin v. 3.5 [19] to characterize the proportion of the
variance in microsatellite allele frequencies or haplotype
frequencies that was attributable to differences in date
of sampling. For this analysis, we used only the two
samples from each population that were separated by
the longest time interval.
We estimated current effective population sizes based

on temporal changes in microsatellite allele at all seven
sites. The effective size of a population (Ne) is defined
as the size of an ideal population (i.e., one of constant
size, discrete generations, and negligible selection and
gene flow), which would exhibit the same genetic char-
acteristics as the population at hand [24]. Ne, therefore,
reflects the rate of change in gene frequencies due to
random drift alone [25]. We used two methods: the
moment-based approach [26] and a likelihood approach
implemented in TM3 [27]. Estimates were generated
using the software NeEstimator [28]. For TM3, we
employed 100,000 updates and a maximum Ne of
20,000.
For all analyses, we assumed that G. fuscipes under-

goes approximately 8 generations per year using obser-
vations from colony flies (~7.3 generations per year, [29]
~8.5 generations per year at 25°C, [30] and those
reported in other studies of the palpalis group
(G. palpalis gambiensis and G. palpalis palpalis) in Gui-
nea and Equatorial Guinea [5,31]. All populations were
evaluated at an interval of at least one year (~8 genera-
tions apart). For four populations (BU, OK, BN, MK),
we generated estimates at two different sampling inter-
vals (0 to 8 generations, and 0 to 12 generations).
For each temporal sample in all seven populations, we

also tested for an excess of heterozygosity relative to
observed allelic diversity, which may be indicative of a
recent bottleneck [32]. For each temporal sample, tests
of heterozygosity excess were performed separately for
each microsatellite locus. Significance was assessed
across loci using Wilcoxon’s test, which is the most
appropriate test given the number of microsatellite loci
evaluated. All tests were performed using the program
BOTTLENECK [33].

Results
Marker validation and diversity
We genotyped a total of 667 tsetse flies at 16 microsa-
tellite loci. We detected 17 values of FIS (out of 288)
that exhibited significant departures from HWE at p <
0.05 (Additional file 1: Table S1). Assessed by locus, the
number of significant FIS values observed was consistent
with chance at an overall value of p < 0.05. Assessed by
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population, the number of significant FIS values
observed was consistent with chance for all populations
except the sample representing generation 12 from BN.
Following sequential Bonferroni correction, only one
locus pair exhibited significant linkage, and only in one
population, confirming previous work showing that
these loci were unlinked [10,14].
Microsatellite diversity was lowest in the samples from

Mukongoro (MK) and highest in the samples from Bun-
ghazi (BN). Allelic richness ranged from 3.0 to 4.4 and
expected heterozygosity (HE) ranged from 0.418 to
0.609, (Table 1). MtDNA haplotype diversity was rela-
tively low across samples with the number of haplotypes
ranging from 1 to 4. As expected, nucleotide diversity
was generally higher in populations from the zone of
contact which were composed of flies with both north-
ern and southern ancestry. We detected only two haplo-
types that had not been previously reported [10]. Both
of these haplotypes were recovered in population OT
and differed by just one substitution from Hap26 or
Hap27 [10].

Temporal variation in genetic diversity
Variation in allele frequencies by population and locus are
depicted in Figure 2. Genetic differentiation between sam-
ples taken from the same population but at different times
was extremely low, and uniformly lower than the differen-
tiation observed between populations. DEST averaged
0.001 for temporally-spaced samples within populations,
compared to 0.308 between populations (Additional file 2:
Table S2). The largest values of DEST among temporally-
spaced samples were observed in Masindi (MS generation
0 vs.13, DEST = 0.019 ± 0.022) and Otuboi (OT generation
0 vs. 11, DEST = 0.013 ± 0.007).
Mitochondrial haplotype frequencies also exhibited

little change over time (Figure 3). We observed a signifi-
cant change in haplotype frequencies only between
the two temporally spaced samples from Junda (JN,
p = 0.046). This was attributable to the loss of the two
least common haplotypes in the sample representing
generation 13.
An analysis of molecular variance using both microsa-

tellite allele frequencies and haplotype frequencies sug-
gested that differences between temporally-spaced
samples explained an insignificant amount of the overall
genetic variation (Table 2). Differences among sites, on
the other hand, contributed significantly to the overall
variation in genetic diversity. The percent variation
explained was greater in the case of mtDNA data,
compared to microsatellite data.

Effective size
Estimates of Ne were generated for the seven popula-
tions based on microsatellite allele frequency changes

observed among samples collected at different times
from the same population. Momentum-based estimates
ranged from 216 to infinity, but only the estimate from
OT was bounded by a 95% confidence interval that did
not include infinity (Table 3). Likelihood estimates ran-
ged from 152 to 19,550 and all estimates were bounded
by 95% confidence intervals that included 20,000, the
maximum value of Ne considered (Table 3).
For populations MK and OK, estimates of Ne were

similar regardless of whether the calculations were per-
formed using data for generations 0 and 8 or generations
0 and 12. In populations BN and BU, however, estimates
of Ne derived from the moment method differed by an
order of magnitude depending on whether the sample
representing 8 generations or 12 generations was
included. In population BN, the estimate of Ne generated
by the Likelihood method was similarly unstable.

Population bottlenecks
Following Bonferonni correction, seven samples (taken
from Bunghazi (BN), Masindi (MS), Okame (OK) and
Otuboi (OT)) exhibited significant signatures of a recent
population bottleneck under the infinite allele model
(IAM) model. Only one of these samples (MS generation
0) also tested positive for a bottleneck under the two
phase model (TPM; Table 4). Samples from Busime (BU)
and Mukongoro (MK) exhibited the least evidence for
past bottlenecks (all but one p-value >> 0.05), however
power to detect a bottleneck may have been low in MK
on account of relatively low genetic diversity (Table 1).

Discussion
We assessed changes in genetic composition of seven
tsetse populations in southeast Uganda in order to gain
insight into the population dynamics of G. f. fuscipes. In
general, our results provide evidence for temporal
stability of G. f. fuscipes populations over the one to two
year period that we examined. With the exception of
just one or two populations discussed below, mitochon-
drial haplotype frequencies and microsatellite allele fre-
quencies exhibited little change over time and effective
population sizes were generally large.
Compared to other riverine species of tsetse, estimates

of Ne for G. f. fuscipes were similar to or larger than
estimates for G. palpalis palpalis in Equatorial Guinea
[31] and 2 to 3 orders of magnitudes larger than esti-
mates for G. p. gambiensis on islands off the coast of
Guinea [5]. Values of Ne for G. f. fuscipes populations
were also generally larger than estimates for a savannah
species, G. pallidipes, in Kenya [34]. The large effective
population sizes and overall stability of G. f. fuscipes
populations support the hypothesis [35] that seasonal
variation in tsetse numbers, in which larva develop in
utero, should be relatively small, since they do not
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depend on surface water or moist media for breeding.
Nonetheless, the lack of variation in genetic structure
over time is surprising given the reduced abundance of
G. f. fuscipes observed during the dry season in Uganda
[12]. To reconcile our results with this observation,
which may reflect the low efficiency of traps used for

monitoring [36,37], we suggest that populations of G. f.
fuscipes in dry season refugia remain large, and that sea-
sonal invasion of marginal wet-season habitat (e.g., at
Mukongoro, Bunghazi) must occur in waves of tsetse
that are large enough to be representative of the refugia
population. Large populations of pupa, which develop in

1       2      3       4       5       6       7       8        9    10      11     12     13     14     15     16 

Figure 2 Microsatellite allele frequencies observed in seven populations of G. f. fuscipes sampled at either two or three different
times. Numbers after location code indicate the time interval (in generations) since the first sampling.
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the ground over a period of weeks, may also help to
ensure the continuity of tsetse populations and would
contribute to reducing the variance in genetic changes
over time.
In contrast to the other populations, estimates of Ne

were low for populations MS and especially OT, where
both moment and likelihood methods produced values
of only about 200. These values could be indicative of
small populations. Ne may also be influenced by over-
lapping generations and temporal variance in reproduc-
tive success as well as the forces of selection, mutation
and migration. In this study, however, the low values

of Ne observed in these populations probably reflected
small differences in the location of trapping sites used
for the two temporal samples. Generation 13 from MS
was sampled at a distance of about 4 km from the origi-
nal site at which generation 0 was sampled. Likewise,
generation 11 from OT was sampled at a single site that
was 11-20 km from the relatively widely dispersed sites
from which generation 0 was sampled. Thus, for these
sites, which were the only two sites sampled at different
locations across years, fine-scale spatial genetic variation
could be responsible for the apparent temporal variation
in gene frequencies, thus depressing estimates of Ne.

Figure 3 Mitochondrial haplotype frequencies observed in seven populations of G. f. fuscipes sampled at two different time periods.
Numbers after location codes indicate the time interval (in generations) since the first sampling. Only temporal samples from Junda (JN) differed
significantly.

Table 2 Results of an AMOVA testing for temporal genetic structure in seven populations of G. fuscipes sampled
in 2008 and also in 2009/2010

d.f Sum of squares Variance components % Variation p

mtDNA 2008 vs. 2009/2010

Among temporal groups 1 0.4 -0.24319 -11.1 0.997

Among sites within groups 12 374.6 1.66812 76.4 0

Within sites 242 183.3 0.75752 35.7 0

microsatellites 2008 vs. 2009/2010

Among temporal groups 1 11.6 -0.15553 -3.2 1

Among sites within groups 12 986.2 1.07307 22.0 0

Within sites 1022 4057.4 3.96592 81.2 0

Results for microsatellites represent the weighted average over 16 loci. Variance components for which the expected value is zero may be slightly negative by
chance.
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Given that genetic variation in MS and OT samples
can probably be attributed to microgeographic variation,
the change in genetic composition of the population at
JN likely reflects the only significant temporal change
observed in this study. Although microsatellite allele fre-
quencies were largely invariate, mtDNA haplotype fre-
quencies here differed significantly between generation 0
and generation 13. Junda (JN), along with sites BN and
MS, lies along a narrow zone of contact between two
long-diverged and historically-isolated groups of G. f.
fuscipes [9,10]. In 2008, populations at all three of these
sites harbored both “southern” and “northern” mtDNA

haplotypes. Interestingly, in Junda, individuals with the
“southern” haplotypes disappeared from the sample after
13 generations. This could be due to a particularly small
population of females and stochastic variation in female
reproductive success, although in tsetse, the latter is
more likely to be true among males than females [5].
Mating success can also be influenced by Wolbachia, a
symbiont that may impose mating barriers due to cyto-
plasmic incompatibility between infected and uninfected
tsetse individuals [38], thereby biasing mating in favor
of infected females and potentially producing mitochon-
drial sweeps [39]. Given the change in mtDNA observed
at Junda, flies here should be examined for Wolbachia.
If present, the zone of contact in Uganda may provide a
unique opportunity to monitor symbiont-induced popu-
lation changes over time.

Additional material

Additional file 1: Table S1. FIS values for the 16 microsatellite loci.
Significance was assessed at p < 0.05 (*) and a Bonferroni-corrected
value of p < 0.0028 (bold). Low variability precluded calculation of FIS in
some populations (n/a).

Additional file 2: Table S2. Pairwise estimates of genetic differentiation
(Jost’s DEST) between samples taken from seven populations of G. f.
fuscipes. Estimates of differentiation (below diagonal) and associated
standard error (above diagonal) between populations of flies sampled at
the same site but different times are shaded in grey.
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